684 research outputs found

    Monte Carlo Simulations of Interacting Anyon Chains

    Full text link
    A generalized version of the valence-bond Monte Carlo method is used to study ground state properties of the 1+1 dimensional quantum QQ-state Potts models. For appropriate values of QQ these models can be used to describe interacting chains of non-Abelian anyons --- quasiparticle excitations of certain exotic fractional quantum Hall states.Comment: 4 pages, 5 figure

    Capturing Requirement Correlation in Adaptive Systems

    Get PDF

    Anisotropic Inflation with Non-Abelian Gauge Kinetic Function

    Full text link
    We study an anisotropic inflation model with a gauge kinetic function for a non-abelian gauge field. We find that, in contrast to abelian models, the anisotropy can be either a prolate or an oblate type, which could lead to a different prediction from abelian models for the statistical anisotropy in the power spectrum of cosmological fluctuations. During a reheating phase, we find chaotic behaviour of the non-abelian gauge field which is caused by the nonlinear self-coupling of the gauge field. We compute a Lyapunov exponent of the chaos which turns out to be uncorrelated with the anisotropy.Comment: 16 pages, 4 figure

    Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes

    Full text link
    The Mott-Hubbard transition is studied for a Hubbard model with orbital degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments, we conjecture that the Mott-Hubbard transition takes place for U/W \propto \sqrt{N}, where U is the Coulomb interaction and W is the band width. This is supported by exact diagonalization and Monte-Carlo calculations. Realistic parameters for the doped fullerenes lead to the conclusion that stoichiometric A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B Rapid Com

    Electron self-trapping in intermediate-valent SmB6

    Full text link
    SmB6 exhibits intermediate valence in the ground state and unusual behaviour at low temperatures. The resistivity and the Hall effect cannot be explained either by conventional sf-hybridization or by hopping transport in an impurity band. At least three different energy scales determine three temperature regimes of electron transport in this system. We consider the ground state properties, the soft valence fluctuations and the spectrum of band carriers in n-doped SmB6. The behaviour of excess conduction electrons in the presence of soft valence fluctuations and the origin of the three energy scales in the spectrum of elementary excitations is discussed. The carriers which determine the low-temperature transport in this system are self-trapped electron-polaron complexes rather than simply electrons in an impurity band. The mechanism of electron trapping is the interaction with soft valence fluctuations.Comment: 12 pages, 3 figure

    CMB constraints on noncommutative geometry during inflation

    Full text link
    We investigate the primordial power spectrum of the density perturbations based on the assumption that spacetime is noncommutative in the early stage of inflation. Due to the spacetime noncommutativity, the primordial power spectrum can lose rotational invariance. Using the k-inflation model and slow-roll approximation, we show that the deviation from rotational invariance of the primordial power spectrum depends on the size of noncommutative length scale L_s but not on sound speed. We constrain the contributions from the spacetime noncommutativity to the covariance matrix for the harmonic coefficients of the CMB anisotropies using five-year WMAP CMB maps. We find that the upper bound for L_s depends on the product of sound speed and slow-roll parameter. Estimating this product using cosmological parameters from the five-year WMAP results, the upper bound for L_s is estimated to be less than 10^{-27} cm at 99.7% confidence level.Comment: 8 pages, 1 figure, References added, Accepted for publication in EPJC (submitted version

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Kondo effect in coupled quantum dots: a Non-crossing approximation study

    Full text link
    The out-of-equilibrium transport properties of a double quantum dot system in the Kondo regime are studied theoretically by means of a two-impurity Anderson Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in slave-boson language, is solved by means of a generalization of the non-crossing approximation (NCA) to the present problem. We provide benchmark calculations of the predictions of the NCA for the linear and nonlinear transport properties of coupled quantum dots in the Kondo regime. We give a series of predictions that can be observed experimentally in linear and nonlinear transport measurements through coupled quantum dots. Importantly, it is demonstrated that measurements of the differential conductance G=dI/dV{\cal G}=dI/dV, for the appropriate values of voltages and inter-dot tunneling couplings, can give a direct observation of the coherent superposition between the many-body Kondo states of each dot. This coherence can be also detected in the linear transport through the system: the curve linear conductance vs temperature is non-monotonic, with a maximum at a temperature TT^* characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure

    Probing non-universal gaugino masses via Higgs boson production under SUSY cascades at the LHC: A detailed study

    Full text link
    Cascade decays of Supersymmetric (SUSY) particles are likely to be prolific sources of Higgs bosons at the Large Hadron Collider (LHC). In this work, we explore, with the help of detailed simulation, the role of non-universal gaugino masses in the production of the Higgs bosons under SUSY cascades. The analysis is carried out by choosing an appropriate set of benchmark points with non-universal gaugino masses in the relevant SUSY parameter space and then contrasting the resulting observations with the corresponding cases having universal relationship among the same. It is shown that even of data at an early phase of the LHC-run with 10 fb1^{-1} one would be able to see, under favourable situations, the imprint of non-universal gaugino masses by reconstructing various Higgs boson resonances and comparing their rates. With increased accumulated luminosities, the indications would naturally become distinct over a larger region of the parameter space.Comment: 48 page
    corecore