27 research outputs found
Superconductivity in the two dimensional Hubbard Model.
Quasiparticle bands of the two-dimensional Hubbard model are calculated using
the Roth two-pole approximation to the one particle Green's function. Excellent
agreement is obtained with recent Monte Carlo calculations, including an
anomalous volume of the Fermi surface near half-filling, which can possibly be
explained in terms of a breakdown of Fermi liquid theory. The calculated bands
are very flat around the (pi,0) points of the Brillouin zone in agreement with
photoemission measurements of cuprate superconductors. With doping there is a
shift in spectral weight from the upper band to the lower band. The Roth method
is extended to deal with superconductivity within a four-pole approximation
allowing electron-hole mixing. It is shown that triplet p-wave pairing never
occurs. Singlet d_{x^2-y^2}-wave pairing is strongly favoured and optimal
doping occurs when the van Hove singularity, corresponding to the flat band
part, lies at the Fermi level. Nearest neighbour antiferromagnetic correlations
play an important role in flattening the bands near the Fermi level and in
favouring superconductivity. However the mechanism for superconductivity is a
local one, in contrast to spin fluctuation exchange models. For reasonable
values of the hopping parameter the transition temperature T_c is in the range
10-100K. The optimum doping delta_c lies between 0.14 and 0.25, depending on
the ratio U/t. The gap equation has a BCS-like form and (2*Delta_{max})/(kT_c)
~ 4.Comment: REVTeX, 35 pages, including 19 PostScript figures numbered 1a to 11.
Uses epsf.sty (included). Everything in uuencoded gz-compressed .tar file,
(self-unpacking, see header). Submitted to Phys. Rev. B (24-2-95
Modeling the Subsurface Structure of Sunspots
While sunspots are easily observed at the solar surface, determining their
subsurface structure is not trivial. There are two main hypotheses for the
subsurface structure of sunspots: the monolithic model and the cluster model.
Local helioseismology is the only means by which we can investigate
subphotospheric structure. However, as current linear inversion techniques do
not yet allow helioseismology to probe the internal structure with sufficient
confidence to distinguish between the monolith and cluster models, the
development of physically realistic sunspot models are a priority for
helioseismologists. This is because they are not only important indicators of
the variety of physical effects that may influence helioseismic inferences in
active regions, but they also enable detailed assessments of the validity of
helioseismic interpretations through numerical forward modeling. In this paper,
we provide a critical review of the existing sunspot models and an overview of
numerical methods employed to model wave propagation through model sunspots. We
then carry out an helioseismic analysis of the sunspot in Active Region 9787
and address the serious inconsistencies uncovered by
\citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find
that this sunspot is most probably associated with a shallow, positive
wave-speed perturbation (unlike the traditional two-layer model) and that
travel-time measurements are consistent with a horizontal outflow in the
surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
To what extent do frameworks of reading development and the phonics screening check support the assessment of reading development in England?
The purpose of this article is to question the suitability of the phonics screening check in relation to models and theories of reading development. The article questions the appropriateness of the check by drawing on theoretical frameworks which underpin typical reading development. I examine the Simple View of Reading developed by Gough and Tunmer and Ehri’s model of reading development. The article argues that the assessment of children’s development in reading should be underpinned and informed by a developmental framework which identifies the sequential skills in reading development
Local Helioseismology of Sunspots: Current Status and Perspectives (Invited Review)
Mechanisms of the formation and stability of sunspots are among the
longest-standing and intriguing puzzles of solar physics and astrophysics.
Sunspots are controlled by subsurface dynamics hidden from direct observations.
Recently, substantial progress in our understanding of the physics of the
turbulent magnetized plasma in strong-field regions has been made by using
numerical simulations and local helioseismology. Both the simulations and
helioseismic measurements are extremely challenging, but it becomes clear that
the key to understanding the enigma of sunspots is a synergy between models and
observations. Recent observations and radiative MHD numerical models have
provided a convincing explanation to the Evershed flows in sunspot penumbrae.
Also, they lead to the understanding of sunspots as self-organized magnetic
structures in the turbulent plasma of the upper convection zone, which are
maintained by a large-scale dynamics. Local helioseismic diagnostics of
sunspots still have many uncertainties, some of which are discussed in this
review. However, there have been significant achievements in resolving these
uncertainties, verifying the basic results by new high-resolution observations,
testing the helioseismic techniques by numerical simulations, and comparing
results obtained by different methods. For instance, a recent analysis of
helioseismology data from the Hinode space mission has successfully resolved
several uncertainties and concerns (such as the inclined-field and phase-speed
filtering effects) that might affect the inferences of the subsurface
wave-speed structure of sunspots and the flow pattern. It becomes clear that
for the understanding of the phenomenon of sunspots it is important to further
improve the helioseismology methods and investigate the whole life cycle of
active regions, from magnetic-flux emergence to dissipation.Comment: 34 pages, 18 figures, submitted to Solar Physic