106 research outputs found

    A Statistical Mechanical Problem in Schwarzschild Spacetime

    Full text link
    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.Comment: Corrected an equation misprint, added four references, and brief comments on the system's center of mass and the thermodynamic limi

    Conformal symmetry and deflationary gas universe

    Full text link
    We describe the ``deflationary'' evolution from an initial de Sitter phase to a subsequent Friedmann-Lema\^{\i}tre-Robertson-Walker (FLRW) period as a specific non-equilibrium configuration of a self-interacting gas. The transition dynamics corresponds to a conformal, timelike symmetry of an ``optical'' metric, characterized by a refraction index of the cosmic medium which continously decreases from a very large initial value to unity in the FLRW phase.Comment: 10 pages, to appear in "Exact Solutions and Scalar Fields in Gravity: Recent Developments", ed. by A. Macias, J. Cervantes-Cota, and C. L\"ammerzahl, Kluwer Academic Publishers 200

    The restricted two-body problem in constant curvature spaces

    Full text link
    We perform the bifurcation analysis of the Kepler problem on S3S^3 and L3L^3. An analogue of the Delaunay variables is introduced. We investigate the motion of a point mass in the field of the Newtonian center moving along a geodesic on S2S^2 and L2L^2 (the restricted two-body problem). When the curvature is small, the pericenter shift is computed using the perturbation theory. We also present the results of the numerical analysis based on the analogy with the motion of rigid body.Comment: 29 pages, 7 figure

    Eternity and the cosmological constant

    Get PDF
    The purpose of this paper is to analyze the stability of interacting matter in the presence of a cosmological constant. Using an approach based on the heat equation, no imaginary part is found for the effective potential in the presence of a fixed background, which is the n-dimensional sphere or else an analytical continuation thereof, which is explored in some detail.Comment: 45 pages, 6 figure

    Exact Foldy-Wouthuysen transformation for spin 0 particle in curved space

    Full text link
    Up to now, the only known exact Foldy- Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one third of the relevant term in the fermionic case.Comment: 10 pages, revtex, improved version to appear in Phys. Rev.

    On the consistency of de Sitter vacua

    Get PDF
    In this paper the consistency of the de Sitter invariant α\alpha -vacua, which have been introduced as simple tools to study the effects of transplanckian physics, is investigated. In particular possible non renormalization problems are discussed, as well as non standard properties of Greens functions. We also discuss the non thermal properties of the α\alpha -vacua and the necessity of α\alpha to change. The conclusion is that non of these problems necessarily exclude an application of the α\alpha -vacua to inflation.Comment: 12 pages, v2: minor clarifications and corrections to reference

    Thermodynamics and Kinetic Theory of Relativistic Gases in 2-D Cosmological Models

    Get PDF
    A kinetic theory of relativistic gases in a two-dimensional space is developed in order to obtain the equilibrium distribution function and the expressions for the fields of energy per particle, pressure, entropy per particle and heat capacities in equilibrium. Furthermore, by using the method of Chapman and Enskog for a kinetic model of the Boltzmann equation the non-equilibrium energy-momentum tensor and the entropy production rate are determined for a universe described by a two-dimensional Robertson-Walker metric. The solutions of the gravitational field equations that consider the non-equilibrium energy-momentum tensor - associated with the coefficient of bulk viscosity - show that opposed to the four-dimensional case, the cosmic scale factor attains a maximum value at a finite time decreasing to a "big crunch" and that there exists a solution of the gravitational field equations corresponding to a "false vacuum". The evolution of the fields of pressure, energy density and entropy production rate with the time is also discussed.Comment: 23 pages, accepted in PR

    Derivation of fluid dynamics from kinetic theory with the 14--moment approximation

    Full text link
    We review the traditional derivation of the fluid-dynamical equations from kinetic theory according to Israel and Stewart. We show that their procedure to close the fluid-dynamical equations of motion is not unique. Their approach contains two approximations, the first being the so-called 14-moment approximation to truncate the single-particle distribution function. The second consists in the choice of equations of motion for the dissipative currents. Israel and Stewart used the second moment of the Boltzmann equation, but this is not the only possible choice. In fact, there are infinitely many moments of the Boltzmann equation which can serve as equations of motion for the dissipative currents. All resulting equations of motion have the same form, but the transport coefficients are different in each case.Comment: 15 pages, 3 figures, typos fixed and discussions added; EPJA: Topical issue on "Relativistic Hydro- and Thermodynamics

    Uniting cosmological epochs through the twister solution in cosmology with non-minimal coupling

    Full text link
    We investigate dynamics of a flat FRW cosmological model with a barotropic matter and a non-minimally coupled scalar field (both canonical and phantom). In our approach we do not assume any specific form of a potential function for the scalar field and we are looking for generic scenarios of evolution. We show that dynamics of universe can be reduced to a 3-dimensional dynamical system. We have found the set of fixed points and established their character. These critical points represent all important epochs in evolution of the universe : (a) a finite scale factor singularity, (b) an inflation (rapid-roll and slow-roll), (c) a radiation domination, (d) a matter domination and (e) a quintessence era. We have shown that the inflation, the radiation and matter domination epochs are transient ones and last for a finite amount of time. The existence of the radiation domination epoch is purely the effect of a non-minimal coupling constant. We show the existence of a twister type solution wandering between all these critical points.Comment: 22 pages, 5 figs; (v2.) 27 pages, 12 figs, JCAP in pres

    Squeezed States in the de Sitter Vacuum

    Full text link
    We discuss the treatment of squeezed states as excitations in the Euclidean vacuum of de Sitter space. A comparison with the treatment of these states as candidate no-particle states, or alpha-vacua, shows important differences already in the free theory. At the interacting level alpha-vacua are inconsistent, but squeezed state excitations seem perfectly acceptable. Indeed, matrix elements can be renormalized in the excited states using precisely the standard local counterterms of the Euclidean vacuum. Implications for inflationary scenarios in cosmology are discussed.Comment: 15 pages, no figures. One new citation in version 3; no other change
    corecore