21 research outputs found

    Characterizing fruit ripening in plantain and Cavendish bananas: A proteomics approach

    Get PDF
    The fruit physiology of banana cultivars other than Cavendish is poorly understood. To study the ripening process, samples were taken daily from plantain and Cavendish bananas and the ripening stages were determined. We present data from the green to the fully mature stage. By analyzing the protein abundances during ripening we provide some new insights into the ripening process and how plantains fruits are different. Multivariate analysis of the proteins was performed correlated to the starch dynamics. A drop in sucrose synthase and a rise of acid invertase during ripening indicated a change in the balance of the sucrose fate. During ripening, sugars may no longer be available for respiration since they are stored in the vacuoles, making citrate the preferred respiratory substrate. We found significant cultivar specific differences in granule-bound starch synthase, alpha- and beta amylases and cell wall invertase when comparing the protein content at the same ripening stage. This corroborates the difference in starch content/structure between both banana types. Differences in small heat shock proteins and in the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase support respectively the presumed higher carotenoid content and the firmer fruit structure of plantains

    Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities

    Get PDF
    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve

    Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions

    Full text link
    The large distance behaviors of the random field and random anisotropy O(N) models are studied with the functional renormalization group in 4-\epsilon dimensions. The random anisotropy Heisenberg (N=3) model is found to have a phase with the infinite correlation radius at low temperatures and weak disorder. The correlation function of the magnetization obeys a power law < m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the correlation radius is found to be finite at the arbitrarily weak disorder for any N>3. The random field case is studied with a new simple method, based on a rigorous inequality. This approach allows one to avoid the integration of the functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The Psychological Science Accelerator’s COVID-19 rapid-response dataset

    Get PDF
    In response to the COVID-19 pandemic, the Psychological Science Accelerator coordinated three large-scale psychological studies to examine the effects of loss-gain framing, cognitive reappraisals, and autonomy framing manipulations on behavioral intentions and affective measures. The data collected (April to October 2020) included specific measures for each experimental study, a general questionnaire examining health prevention behaviors and COVID-19 experience, geographical and cultural context characterization, and demographic information for each participant. Each participant started the study with the same general questions and then was randomized to complete either one longer experiment or two shorter experiments. Data were provided by 73,223 participants with varying completion rates. Participants completed the survey from 111 geopolitical regions in 44 unique languages/dialects. The anonymized dataset described here is provided in both raw and processed formats to facilitate re-use and further analyses. The dataset offers secondary analytic opportunities to explore coping, framing, and self-determination across a diverse, global sample obtained at the onset of the COVID-19 pandemic, which can be merged with other time-sampled or geographic data

    The plantain proteome, a focus on Allele specific proteins obtained from plantain fruits

    No full text
    Proteomics has been applied with great potential to elucidate molecular mechanisms in plants. This is especially valid in the case of non-model crops of which their genome has not been sequenced yet, or is not well annotated. Plantains are a kind of cooking bananas that are economically very important in Africa, India, and Latin America. The aim of this work was to characterize the fruit proteome of common dessert bananas and plantains and to identify proteins that are only encoded by the plantain genome. We present the first plantain fruit proteome. All data are available via ProteomeXchange with identifier PXD005589. Using our in-house workflow, we found 37 alleles to be unique for plantain covered by 59 peptides. Although we do not have access (yet) to whole-genome sequencing data from triploid banana cultivars, we show that proteomics is an easily accessible complementary alternative to detect different allele specific SNPs/SAAPs. These unique alleles might contribute toward the differences in the metabolism between dessert bananas and plantains. This dataset will stimulate further analysis by the scientific community, boost plantain research, and facilitate plantain breeding

    From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown

    Get PDF
    We investigated the fruit development in two plantain banana cultivars from two weeks after bunch emergence till twelve weeks through high-throughput proteomics, major metabolite quantification and metabolic flux analyses. We aimed to investigate for the first time different fruit development stages and gain unique insights into the order of appearance and dominance of specific enzymes/fluxes. Starch synthesis and breakdown are processes that take place simultaneously. During the first ten weeks fruits accumulated up to 48% of starch. Glucose 6-phosphate and fructose were important starch precursors. We found a unique amyloplast transporter and hypothesize that it facilitates the import of fructose. We identified an invertase originating from the M. balbisiana genome that would enable to flow carbon back to growth and starch synthesis and keep a high starch content even during ripening. Enzymes associated to the initiation of ripening were involved in ethylene and auxin metabolism, starch breakdown, pulp softening and ascorbate biosynthesis. The initiation of ripening was cultivar specific. A faster initiation was particularly linked to 1-aminocyclopropane-1-carboxylate oxidase and 4-alpha glucanotransferase disproportioning enzyme. This knowledge is fundamental to determine the ideal harvest moment, reduce postharvest losses and improve product quality through breeding

    From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown

    No full text
    We investigated the fruit development in two plantain banana cultivars from two weeks after bunch emergence till twelve weeks through high-throughput proteomics, major metabolite quantification and metabolic flux analyses. We give for the first time an insight at early stages of starch synthesis and breakdown. Starch and sugar synthesis and breakdown are processes that take place simultaneously. During the first eight to ten weeks the balance between synthesis and breakdown is clearly in favour of sugar breakdown and a net starch synthesis occurs. During this period, plantain fruit accumulates up to 48% of starch. The initiation of the ripening process is accompanied with a shift in balance towards net starch breakdown. The key enzymes related to this are phosphoglucan water dikinase (PWD), phosphoglucan phosphatase, α-1,6-glucosidase starch debranching enzyme (DBE), alpha glucan phosphorylase (PHS) and 4-alpha glucanotransferase disproportioning enzyme (DPE). The highest correlations with sucrose have been observed for PHS and DPE. There is also a significant correlation between the enzymes involved in ethylene biosynthesis, starch breakdown, pulp softening and ascorbate biosynthesis. The faster ending of maturation and starting of ripening in the Agbagba cultivar are linked to the key enzymes 1-aminocyclopropane-1-carboxylate oxidase and DPE. This knowledge of the mechanisms that regulate starch and sugar metabolisms during maturation and ripening is fundamental to determine the harvest moment, reduce postharvest losses and improve final product quality of breeding programs.Centre français de phénomique végétal
    corecore