15 research outputs found

    A mouse model reproducing the pathophysiology of neonatal groupΒ B streptococcal infection

    Get PDF
    Group B streptococcal (GBS) meningitis remains a devastating disease. The absence of an animal model reproducing the natural infectious process has limited our understanding of the disease and, consequently, delayed the development of effective treatments. We describe here a mouse model in which bacteria are transmitted to the offspring from vaginally colonised pregnant females, the natural route of infection. We show that GBS strain BM110, belonging to the CC17 clonal complex, is more virulent in this vertical transmission model than the isogenic mutant BM110βˆ†cylE, which is deprived of hemolysin/cytolysin. Pups exposed to the more virulent strain exhibit higher mortality rates and lung inflammation than those exposed to the attenuated strain. Moreover, pups that survive to BM110 infection present neurological developmental disability, revealed by impaired learning performance and memory in adulthood. The use of this new mouse model, that reproduces key steps of GBS infection in newborns, will promote a better understanding of the physiopathology of GBS-induced meningitis.The authors gratefully acknowledge the help of EncarnacaΜ§ Μƒo Ribeiro for excellent technical assistance, Joana Tavares for assisting with IVIS Lumina LT, Susana Roque for the luminex instrument experiments, the Molecular Microbiology group at i3S for microscope use, and the Portuguese architect and artist Gil Ferreira da Silva for the artworks included in the last figure. This work was supported by funds from Foundation for Science and Technology (FCT), European Regional Development Fund (FEDER) and Compete under project POCI-01-0145-FEDER-016607 (PTDC/IMI-MIC/1049/2014) and from the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). T.S. and A.M. were supported by Investigador FCT (IF/00875/2012 and IF/00753/2014), POPH and Fundo Social Europeu. E.B.A. and C.C.P. hold postdoctoral fellowships from FCT (PTDC/IMI-MIC/1049/2014 and SFRH/BPD/91962/2012). Ar.F. and P.T.C. were supported by Laboratoire d’Excellence (LABEX) Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID).info:eu-repo/semantics/publishedVersio

    Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids

    Get PDF
    Lyme disease is the most common tick-borne human illness in North America. In order to understand the molecular pathogenesis, natural diversity, population structure and epizootic spread of the North American Lyme agent, Borrelia burgdorferi sensu stricto, a much better understanding of the natural diversity of its genome will be required. Towards this end we present a comparative analysis of the nucleotide sequences of the numerous plasmids of B. burgdorferi isolates B31, N40, JD1 and 297. These strains were chosen because they include the three most commonly studied laboratory strains, and because they represent different major genetic lineages and so are informative regarding the genetic diversity and evolution of this organism. A unique feature of Borrelia genomes is that they carry a large number of linear and circular plasmids, and this work shows that strains N40, JD1, 297 and B31 carry related but non-identical sets of 16, 20, 19 and 21 plasmids, respectively, that comprise 33–40% of their genomes. We deduce that there are at least 28 plasmid compatibility types among the four strains. The B. burgdorferi ∼900 Kbp linear chromosomes are evolutionarily exceptionally stable, except for a short ≀20 Kbp plasmid-like section at the right end. A few of the plasmids, including the linear lp54 and circular cp26, are also very stable. We show here that the other plasmids, especially the linear ones, are considerably more variable. Nearly all of the linear plasmids have undergone one or more substantial inter-plasmid rearrangements since their last common ancestor. In spite of these rearrangements and differences in plasmid contents, the overall gene complement of the different isolates has remained relatively constant

    From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness.

    Full text link
    Functional neuroimaging and electrophysiology studies are changing our understanding of patients with coma and related states. Some severely brain damaged patients may show residual cortical processing in the absence of behavioural signs of consciousness. Given these new findings, the diagnostic errors and their potential effects on treatment as well as concerns regarding the negative associations intrinsic to the term vegetative state, the European Task Force on Disorders of Consciousness has recently proposed the more neutral and descriptive term unresponsive wakefulness syndrome. When vegetative/unresponsive patients show minimal signs of consciousness but are unable to reliably communicate the term minimally responsive or minimally conscious state (MCS) is used. MCS was recently subcategorized based on the complexity of patients' behaviours: MCS+ describes high-level behavioural responses (i.e., command following, intelligible verbalizations or non-functional communication) and MCS- describes low-level behavioural responses (i.e., visual pursuit, localization of noxious stimulation or contingent behaviour such as appropriate smiling or crying to emotional stimuli). Finally, patients who show non-behavioural evidence of consciousness or communication only measurable via para-clinical testing (i.e., functional MRI, positron emission tomography, EEG or evoked potentials) can be considered to be in a functional locked-in syndrome. An improved assessment of brain function in coma and related states is not only changing nosology and medical care but also offers a better-documented diagnosis and prognosis and helps to further identify the neural correlates of human consciousness

    Tandem Repeat Deletion in the Alpha C Protein of Group B Streptococcus Is recA Independent

    No full text
    Group B streptococci (GBS) contain a family of protective surface proteins characterized by variable numbers of repeating units within the proteins. The prototype alpha C protein of GBS from the type Ia/C strain A909 contains a series of nine identical 246-bp tandem repeat units. We have previously shown that deletions in the tandem repeat region of the alpha C protein affect both the immunogenicity and protective efficacy of the protein in animal models, and these deletions may serve as a virulence mechanism in GBS. The molecular mechanism of tandem repeat deletion is unknown. To determine whether RecA-mediated homologous recombination is involved in this process, we identified, cloned, and sequenced the recA gene homologue from GBS. A strain of GBS with recA deleted, A909Ξ”recA, was constructed by insertional inactivation in the recA locus. A909Ξ”recA demonstrated significant sensitivity to UV light, and the 50% lethal dose of the mutant strain in a mouse intraperitoneal model of sepsis was 20-fold higher than that of the parent strain. The spontaneous rate of tandem repeat deletion in the alpha C protein in vitro, as well as in our mouse model of immune infection, was studied using A909Ξ”recA. We report that tandem repeat deletion in the alpha C protein does occur in the absence of a functional recA gene both in vitro and in vivo, indicating that tandem repeat deletion in GBS occurs by a recA-independent recombinatorial pathway
    corecore