1,021 research outputs found
Impact of Bi-directional Loading on the Seismic Performance of C-shaped Piers of Core Walls
Reinforced concrete structural walls are commonly used as the primary lateral load resisting system in modern buildings constructed in high seismic regions. Most walls in high-rise buildings are C-shaped to accommodate elevators or other architectural features. C-shaped walls have complex loading and response including: (1) symmetric response in the direction of the web, (2) asymmetric response in the direction of the flange and (3) high compression and shear demands when used as a pier in a coupled-wall configuration. A research study was conducted on C-shaped walls tested under (1) uni-directional and (2) bi-directional loading of an isolated walls and (3) bi-directional loading of a c-shaped pier in a coupled wall system. Each of the walls failed in flexure with strength loss resulting from low-cycle fatigue of the boundary element longitudinal reinforcement with buckling followed by fracture. The damage progression was as follows: (1) cracking at the wall-foundation interface, (2) concrete spalling in the web, (3) buckling and fracture of web reinforcement, (4) spalling in the flanges, (5) buckling and fracture of the bars in the boundary elements. Concrete spalling and steel bar damage occurred at lower strong-axis drift levels for the bi-directionally loaded, resulting in lower drift capacities for these loading protocols. However, for the strong-axis direction, bi-directional loading does not reduce flexural or shear effective stiffness values suggesting that current values are appropriate for design and evaluation of buildings with c-shaped walls
Integration of submersible transect data and high-resolution multibeam sonar imagery for a habitat-based groundfish assessment of Heceta Bank, Oregon
In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in
this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor
Draft genome sequences of two Bulgarian Bacillus anthracis strains
Bacillus anthracis strains previously isolated from Bulgaria form a unique subcluster within the A1.a cluster that is typical for isolates from southeastern Europe. Here, we report the draft genome sequences of two Bulgarian B. anthracis strains belonging to the A branch (A.Br.) 008/009 canonical single nucleotide polymorphism (SNP) group of the major A branch
The HealtheSteps™ lifestyle prescription program to improve physical activity and modifiable risk factors for chronic disease: a pragmatic randomized controlled trial.
BACKGROUND: Our objective was to determine the influence of the HealtheSteps™ lifestyle prescription program on physical activity and modifiable risk factors for chronic disease in individuals at risk.
METHODS: One hundred eighteen participants were recruited from 5 sites in Southwestern Ontario, Canada and randomized to either the intervention (HealtheSteps™ program, n = 59) or a wait-list control group (n = 59). The study comprised three phases: an Active Phase (0 to 6 months) consisted of bi-monthly in-person lifestyle coaching with access to a suite of eHealth technology supports (Heathesteps app, telephone coaching and a private HealtheSteps™ social network) followed by a Minimally-Supported Phase I (6 to 12 months), in which in-person coaching was removed, but participants still had access to the full suite of eHealth technology supports. In the final stage, Minimally-Supported Phase II (12 to 18 months), access to the eHealth technology supports was restricted to the HealtheSteps™ app. Assessments were conducted at baseline, 6, 12 and 18 months. The study primary outcome was the 6-month change in average number of steps per day. Secondary outcomes included: self-reported physical activity and sedentary time; self-reported eating habits; weight and body composition measures; blood pressure and health-related quality of life. Data from all participants were analyzed using an intent-to-treat approach. We applied mixed effects models for repeated measurements and adjusted for age, sex, and site in the statistical analyses.
RESULTS: Participants in HealtheSteps™ increased step counts (between-group [95% confidence interval]: 3132 [1969 to 4294], p \u3c 0.001), decreased their sitting time (- 0.08 [- 0.16 to - 0.006], p = 0.03), and improved their overall healthful eating (- 1.5 [- 2.42 to - 0.58], p = 0.002) to a greater extent compared to control at 6 months. Furthermore, exploratory results showed that these individuals maintained these outcomes 12 months later, after a minimally-supported phase; and retained improvements in sedentary time and improved healthful eating after 18 months. No differences in self-reported physical activity, health-related quality of life, weight, waist circumference or blood pressure were observed between groups at 6 months.
CONCLUSIONS: Our findings suggest that HealtheSteps™ is effective at increasing physical activity (i.e., step counts per day), decreasing weekday sitting time, and improving healthful eating in adults at increased risk for chronic disease after 6 months; however, we did not see change in other risk factors. Nonetheless, the maintenance of these behaviours with minimal support after 12 and even 18 months indicates the promise of HealtheSteps™ for long-term sustainability.
TRIAL REGISTRATION: The trial was registered on April 6, 2015 with ClinicalTrials.gov (identifier: NCT02413385 )
Red-Cockaded Woodpecker Status and Management: West Gulf Coastal Plain and Interior Highlands
Red-cockaded woodpecker populations declined precipitously following European settlement and expansion and cutting of the original pine forests across the southeastern United States. By 1990 most residual populations lacked demographic viability, existed in degraded habitat, and were isolated from other populations. The primary causes of this situation were harvest of the original pine forests of the southeastern United States, conversion of forested lands to other uses, short-rotation silvicultural practices, and alteration of the fire regime in the regenerated forests. As social and legal mandates changed, management of red-cockaded woodpeckers became a higher priority. Intensive management for red-cockaded woodpeckers is currently practiced on most public and a few private lands that still support populations. Recent population trends and the current status of red-cockaded woodpeckers in Oklahoma, Arkansas, Texas, and Louisiana reflect historical factors and the efficacy of recent management
A perspective on using experiment and theory to identify design principles in dye-sensitized solar cells
Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many
years because of their potential for large-scale manufacturing using roll-to-roll processing
allied to their use of earth abundant raw materials. Two main challenges exist for DSC
devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently
achieved for laboratory-scale ‘hero’ cells and replacement of the widely-used liquid
electrolytes which can limit device lifetimes. To increase device efficiency requires optimized
dye injection and regeneration, most likely from multiple dyes while replacement
of liquid electrolytes requires solid charge transporters (most likely hole transport materials
– HTMs). While theoretical and experimental work have both been widely applied to
different aspects of DSC research, these approaches are most effective when working in
tandem. In this context, this perspective paper considers the key parameters which
influence electron transfer processes in DSC devices using one or more dye molecules
and how modelling and experimental approaches can work together to optimize electron
injection and dye regeneration.
This paper provides a perspective that theory and experiment are best used in tandem to study
DSC device
Associations between health-related quality of life, physical function and fear of falling in older fallers receiving home care
Falls and injuries in older adults have significant consequences and costs, both personal and to society. Although having a high incidence of falls, high prevalence of fear of falling and a lower quality of life, older adults receiving home care are underrepresented in research on older fallers. The objective of this study is to determine the associations between health-related quality of life (HRQOL), fear of falling and physical function in older fallers receiving home care
Temporal phylogeography of Yersinia pestis in Madagascar : Insights into the long-term maintenance of plague
Data Availability: All relevant data are within the paper and its Supporting Information files except for the sequence read archives for 31 newly sequenced strains that are available at NCBI under the accession numbers: SRR4175414-SRR4175444. The direct link to this data is: https://www.ncbi.nlm.nih.gov/sra/?term=SRP086709. Funding: Funding for this study was provided by the US Department of Homeland Security’s Science and Technology Directorate award number HSHQDC-10-C-00139 to PK; the Cowden Endowment at Northern Arizona University; and Wellcome fellowships 081705 and 095171 to ST. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Exploring the context of sedentary behaviour in older adults (what, where, why, when and with whom)
BACKGROUND: Older adults are the most sedentary segment of the population. Little information is available about the context of sedentary behaviour to inform guidelines and intervention. There is a dearth of information about when, where to intervene and which specific behaviours intervention should target. The aim of this exploratory study was to obtain objective information about what older adults do when sedentary, where and when they are sedentary and in what social context. METHODS: The study was a cross-sectional data collection. Older adults (Mean age = 73.25, SD ± 5.48, median = 72, IQR = 11) volunteers wore activPAL monitors and a Vicon Revue timelapse camera between 1 and 7 days. Periods of sedentary behaviour were identified using the activPAL and the context extracted from the pictures taken during these periods. Analysis of context was conducted using the Sedentary Behaviour International Taxonomy classification system. RESULTS: In total, 52 days from 36 participants were available for analysis. Participants spent 70.1 % of sedentary time at home, 56.9 % of sedentary time on their own and 46.8 % occurred in the afternoon. Seated social activities were infrequent (6.9 % of sedentary bouts) but prolonged (18 % of sedentary time). Participants appeared to frequently have vacant sitting time (41 % of non-screen sedentary time) and screen sitting was prevalent (36 % of total sedentary time). CONCLUSIONS: This study provides valuable information to inform future interventions to reduce sedentary behaviour. Interventions should consider targeting the home environment and focus on the afternoon sitting time, though this needs confirmation in a larger study. Tackling social isolation may also be a target to reduce sedentary time
Two novel human cytomegalovirus NK cell evasion functions target MICA for lysosomal degradation
NKG2D plays a major role in controlling immune responses through the regulation of natural killer (NK) cells, αβ and γδ T-cell function. This activating receptor recognizes eight distinct ligands (the MHC Class I polypeptide-related sequences (MIC) A andB, and UL16-binding proteins (ULBP)1–6) induced by cellular stress to promote recognition cells perturbed by malignant transformation or microbial infection. Studies into human cytomegalovirus (HCMV) have aided both the identification and characterization of NKG2D ligands (NKG2DLs). HCMV immediate early (IE) gene up regulates NKGDLs, and we now describe the differential activation of ULBP2 and MICA/B by IE1 and IE2 respectively. Despite activation by IE functions, HCMV effectively suppressed cell surface expression of NKGDLs through both the early and late phases of infection. The immune evasion functions UL16, UL142, and microRNA(miR)-UL112 are known to target NKG2DLs. While infection with a UL16 deletion mutant caused the expected increase in MICB and ULBP2 cell surface expression, deletion of UL142 did not have a similar impact on its target, MICA. We therefore performed a systematic screen of the viral genome to search of addition functions that targeted MICA. US18 and US20 were identified as novel NK cell evasion functions capable of acting independently to promote MICA degradation by lysosomal degradation. The most dramatic effect on MICA expression was achieved when US18 and US20 acted in concert. US18 and US20 are the first members of the US12 gene family to have been assigned a function. The US12 family has 10 members encoded sequentially through US12–US21; a genetic arrangement, which is suggestive of an ‘accordion’ expansion of an ancestral gene in response to a selective pressure. This expansion must have be an ancient event as the whole family is conserved across simian cytomegaloviruses from old world monkeys. The evolutionary benefit bestowed by the combinatorial effect of US18 and US20 on MICA may have contributed to sustaining the US12 gene family
- …