1,634 research outputs found
Nucleon electromagnetic form factors from lattice QCD using a nearly physical pion mass
We present lattice QCD calculations of nucleon electromagnetic form factors
using pion masses = 149, 202, and 254 MeV and an action with
clover-improved Wilson quarks coupled to smeared gauge fields, as used by the
Budapest-Marseille-Wuppertal collaboration. Particular attention is given to
removal of the effects of excited state contamination by calculation at three
source-sink separations and use of the summation and generalized
pencil-of-function methods. The combination of calculation at the nearly
physical mass = 149 MeV in a large spatial volume ( = 4.2)
and removal of excited state effects yields agreement with experiment for the
electric and magnetic form factors and up to = 0.5
GeV.Comment: v2: published version; 30 pages, 25 figures, 6 table
Quark Contributions to Nucleon Momentum and Spin from Domain Wall fermion calculations
We report contributions to the nucleon spin and momentum from light quarks
calculated using dynamical domain wall fermions with pion masses down to 300
MeV and fine lattice spacing a=0.084 fm. Albeit without disconnected diagrams,
we observe that spin and orbital angular momenta of both u and d quarks are
opposite, almost canceling in the case of the d quark, which agrees with
previous calculations using a mixed quark action. We also present the full
momentum dependence of n=2 generalized form factors showing little variation
with the pion mass.Comment: 7 pages, 5 figures, NT-LBNL-11-020, MIT-CTP-4323. Presented at the
29th International Symposium on Lattice Field Theory (Lattice 2011), Squaw
Valley, California, 10-16 Jul 201
Signals of confinement in Green functions of SU(2) Yang-Mills theory
The vortex picture of confinement is employed to explore the signals of
confinement in Yang-Mills Green functions. By using SU(2) lattice gauge theory,
it has been well established that the removal of the center vortices from the
lattice configurations results in the loss of confinement. The running coupling
constant, the gluon and the ghost form factors are studied in Landau gauge for
both cases, the full and the vortex removed theory. In the latter case, a
strong suppression of the running coupling constant and the gluon form factor
at low momenta is observed. At the same time, the singularity of the ghost form
factor at vanishing momentum disappears. This observation establishes an
intimate correlation between the ghost singularity and confinement. The result
also shows that a removal of the vortices generates a theory for which
Zwanziger's horizon condition for confinement is no longer satisfied.Comment: 4 pages, 4 figure
Nucleon Electromagnetic Form Factors from Lattice QCD using 2+1 Flavor Domain Wall Fermions on Fine Lattices and Chiral Perturbation Theory
We present a high-statistics calculation of nucleon electromagnetic form
factors in lattice QCD using domain wall quarks on fine lattices, to
attain a new level of precision in systematic and statistical errors. Our
calculations use lattices with lattice spacing a=0.084 fm for
pion masses of 297, 355, and 403 MeV, and we perform an overdetermined analysis
using on the order of 3600 to 7000 measurements to calculate nucleon electric
and magnetic form factors up to 1.05 GeV. Results are shown
to be consistent with those obtained using valence domain wall quarks with
improved staggered sea quarks, and using coarse domain wall lattices. We
determine the isovector Dirac radius , Pauli radius and
anomalous magnetic moment . We also determine connected contributions
to the corresponding isoscalar observables. We extrapolate these observables to
the physical pion mass using two different formulations of two-flavor chiral
effective field theory at one loop: the heavy baryon Small Scale Expansion
(SSE) and covariant baryon chiral perturbation theory. The isovector results
and the connected contributions to the isoscalar results are compared with
experiment, and the need for calculations at smaller pion masses is discussed.Comment: 44 pages, 40 figure
The band structure of BeTe - a combined experimental and theoretical study
Using angle-resolved synchrotron-radiation photoemission spectroscopy we have
determined the dispersion of the valence bands of BeTe(100) along ,
i.e. the [100] direction. The measurements are analyzed with the aid of a
first-principles calculation of the BeTe bulk band structure as well as of the
photoemission peaks as given by the momentum conserving bulk transitions.
Taking the calculated unoccupied bands as final states of the photoemission
process, we obtain an excellent agreement between experimental and calculated
spectra and a clear interpretation of almost all measured bands. In contrast,
the free electron approximation for the final states fails to describe the BeTe
bulk band structure along properly.Comment: 21 pages plus 4 figure
Nucleon structure from mixed action calculations using 2+1 flavors of asqtad sea and domain wall valence fermions
We present high statistics results for the structure of the nucleon from a
mixed-action calculation using 2+1 flavors of asqtad sea and domain wall
valence fermions. We perform extrapolations of our data based on different
chiral effective field theory schemes and compare our results with available
information from phenomenology. We discuss vector and axial form factors of the
nucleon, moments of generalized parton distributions, including moments of
forward parton distributions, and implications for the decomposition of the
nucleon spin.Comment: 68 pages, 47 figures. Main revision points: improved discussion of
chiral fits and systematic uncertainties, several minor refinements. Accepted
for publication in Phys.Rev.
Instantons and Monopoles in General Abelian Gauges
A relation between the total instanton number and the quantum-numbers of
magnetic monopoles that arise in general Abelian gauges in SU(2) Yang-Mills
theory is established. The instanton number is expressed as the sum of the
`twists' of all monopoles, where the twist is related to a generalized Hopf
invariant. The origin of a stronger relation between instantons and monopoles
in the Polyakov gauge is discussed.Comment: 28 pages, 8 figures; comments added to put work into proper contex
Quasinormal modes and holographic correlators in a crunching AdS geometry
We calculate frequency space holographic correlators in an asymptotically AdS crunching background, dual to a relevant deformation of the M2-brane CFT placed in de Sitter spacetime. For massless bulk scalars, exploiting the connection to a solvable supersymmetric quantum mechanical problem, we obtain the exact frequency space correlator for the dual operator in the deformed CFT. Controlling the shape of the crunching surface in the Penrose diagram by smoothly dialling the deformation from zero to infinity, we observe that in the large deformation limit the Penrose diagram becomes a `square', and the exact holographic correlators display striking similarities to their counterparts in the BTZ black hole and its higher dimensional generalisations. We numerically determine quasinormal poles for relevant and irrelevant operators, and find an intricate pattern of these in the complex frequency plane. In the case of relevant operators, the deformation parameter has an infinite sequence of critical values, each one characterised by a pair of poles colliding and moving away from the imaginary frequency axis with increasing deformation. In the limit of infinite deformation all scalar operators have identical quasinormal spectra. We compare and contrast our strongly coupled de Sitter QFT results with strongly coupled thermal correlators from AdS black holes
On topological charge carried by nexuses and center vortices
In this paper we further explore the question of topological charge in the
center vortex-nexus picture of gauge theories. Generally, this charge is
locally fractionalized in units of 1/N for gauge group SU(N), but globally
quantized in integral units. We show explicitly that in d=4 global topological
charge is a linkage number of the closed two-surface of a center vortex with a
nexus world line, and relate this linkage to the Hopf fibration, with homotopy
; this homotopy insures integrality of the global
topological charge. We show that a standard nexus form used earlier, when
linked to a center vortex, gives rise naturally to a homotopy , a homotopy usually associated with 't Hooft-Polyakov monopoles and similar
objects which exist by virtue of the presence of an adjoint scalar field which
gives rise to spontaneous symmetry breaking. We show that certain integrals
related to monopole or topological charge in gauge theories with adjoint
scalars also appear in the center vortex-nexus picture, but with a different
physical interpretation. We find a new type of nexus which can carry
topological charge by linking to vortices or carry d=3 Chern-Simons number
without center vortices present; the Chern-Simons number is connected with
twisting and writhing of field lines, as the author had suggested earlier. In
general, no topological charge in d=4 arises from these specific static
configurations, since the charge is the difference of two (equal) Chern-Simons
number, but it can arise through dynamic reconnection processes. We complete
earlier vortex-nexus work to show explicitly how to express globally-integral
topological charge as composed of essentially independent units of charge 1/N.Comment: Revtex4; 3 .eps figures; 18 page
- …