262 research outputs found

    Reinvestigation of tris­odium dihydroxido­tetra­oxidoneptunate(VII) dihydrate

    Get PDF
    The title compound, Na3[NpO4(OH)2]·2H2O, contains distorted tetra­gonal–bipyramidal centrosymmetric [NpO4(OH)2]3− complex anions. The Np—O distances are 1.8975 (7) and 1.8891 (7) Å in the NpO4 group and 2.3451 (7) Å to the OH group. Both Na atoms (one in a general position, the second in a special position on an inversion centre) have a distorted octahedral oxygen environment

    A major cellular substrate for protein kinases, annexin II, is a DNA-binding protein

    Get PDF
    AbstractWe have screened a human cDNA expression library in λgt11 for clones encoding Alu-binding proteins using direct binding of labeled Alu DNA to recombinant phage lysates fixed on a membrane, and isolated a clone 98% identical in sequence to the well-known substrate of protein kinases, annexin II, which was suggested earlier to play a role in transduction of mitogenic signals and DNA replication. A diagnostic property of annexins is their binding to phospholipids in the presence of calcium ions, and we have found that the interaction of proteins of human nuclear extracts with Alu subsequences is suppressed by Ca/phosphatidylserine liposomes, suggesting overlapping of Ca/phospholipid- and DNA-binding domains in annexin II

    Stable maintenance of de novo assembled human artificial chromosomes in embryonic stem cells and their differentiated progeny in mice

    Get PDF
    De novo assembled alphoid(tetO)-type human artificial chromosomes (HACs) represent a novel promising generation of high capacity episomal vectors. Their function and persistence, and any adverse effects, in various cell types in live animals, have not, however, been explored. In this study we transferred the alphoid(tetO)-HAC into mouse ES cells and assessed whether the presence of this extra chromosome affects their pluripotent properties. Alphoid(tetO)-HAC-bearing ES cells were indistinguishable from their wild-type counterparts: they retained self-renewal potential and full capacity for multilineage differentiation during mouse development, whereas the HAC itself was mitotically and transcriptionally stable during this process. Our data provide the first example of fully synthetic DNA behaving like a normal chromosome in cells of living animals. It also opens a new perspective into functional genetic studies in laboratory animals as well as stem cell-based regenerative medicine

    TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration

    Get PDF
    It is well-established that the kidney collecting duct (CD) plays a central role in regulation of systemic water homeostasis. Aquaporin 2 (AQP2)-dependent water reabsorption in the CD critically depends on the arginine vasopressin (AVP) antidiuretic input and the presence of a favorable osmotic gradient at the apical plasma membrane with tubular lumen being hypotonic compared to the cytosol. This osmotic difference creates a mechanical force leading to an increase in [Ca2+]i in CD cells. The significance of the osmosensitive [Ca2+]i signaling for renal water transport and urinary concentration remain unknown. To examine molecular mechanism and physiological relevance of osmosensitivity in the CD, we implemented simultaneous direct measurements of [Ca2+]i dynamics and the rate of cell swelling as a readout of the AQP2-dependent water reabsorption in freshly isolated split-opened CDs of wild type and genetically manipulated animals and combined this with immunofluorescent detection of AVP-induced AQP2 trafficking and assessment of systemic water balance. We identified the critical role of the Ca2+-permeable TRPC3 channel in osmosensitivity and water permeability in the CD. We further demonstrated that TRPC3 -/- mice exhibit impaired urinary concentration, larger urinary volume and a greater weight loss in response to water deprivation despite increased AVP levels and AQP2 abundance. TRPC3 deletion interfered with AQP2 translocation to the plasma membrane in response to water deprivation. In summary, we provide compelling multicomponent evidence in support of a critical contribution of TRPC3 in the CD for osmosensitivity and renal water handling.Fil: Tomilin, Viktor N.. University of Texas; Estados UnidosFil: Mamenko, Mykola. Augusta University; Estados UnidosFil: Zaika, Oleg. University of Texas; Estados UnidosFil: Ren, Guohui. University of Texas; Estados UnidosFil: Marrelli, Sean P.. University of Texas; Estados UnidosFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Pochynyuk, Oleh. University of Texas; Estados Unido

    The theoretical DFT study of electronic structure of thin Si/SiO2 quantum nanodots and nanowires

    Full text link
    The atomic and electronic structure of a set of proposed thin (1.6 nm in diameter) silicon/silica quantum nanodots and nanowires with narrow interface, as well as parent metastable silicon structures (1.2 nm in diameter), was studied in cluster and PBC approaches using B3LYP/6-31G* and PW PP LDA approximations. The total density of states (TDOS) of the smallest quasispherical silicon quantum dot (Si85) corresponds well to the TDOS of the bulk silicon. The elongated silicon nanodots and 1D nanowires demonstrate the metallic nature of the electronic structure. The surface oxidized layer opens the bandgap in the TDOS of the Si/SiO2 species. The top of the valence band and the bottom of conductivity band of the particles are formed by the silicon core derived states. The energy width of the bandgap is determined by the length of the Si/SiO2 clusters and demonstrates inverse dependence upon the size of the nanostructures. The theoretical data describes the size confinement effect in photoluminescence spectra of the silica embedded nanocrystalline silicon with high accuracy.Comment: 22 pages, 5 figures, 1 tabl

    Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time‑dependent density functional theory

    Get PDF
    Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460–470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein–substrate complex was optimized using a linear scaling quantum–mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified

    Computational approach to design of aptamers to the receptor binding domain of sars-cov-2

    Get PDF
    The aim of the research. In this work, in silico selection of DNA-aptamers to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was performed using molecular modeling methods. Material and methods. A new computational approach to aptamer in silico selection is based on a cycle of simulations, including the stages of molecular modeling, molecular docking, molecular dynamic simulations, and quantum chemical calculations. To verify the obtained calculated results flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods were applied. Results. An initial library consisted of 256 16-mer oligonucleotides was modeled. Based on molecular docking results, the only one aptamer (Apt16) was selected from the library as a starting aptamer to the RBD protein. For Apt16/RBD complex, molecular dynamic and quantum chemical calculations revealed the pairs of nucleotides and amino acids whose contribution to the binding between aptamer and RBD is the largest. Taking into account these data, Apt16 was subjected to the structure modifications in order to increase the binding with the RBD. Thus, a new aptamer Apt25 was designed. The procedure of 1) aptamer structure modeling/modification, 2) molecular docking, 3) molecular dynamic simulations, 4) quantum chemical calculations was performed sev-eral times. As a result, four aptamers (Apt16, Apt25, Apt27, Apt31) to the RBD were designed in silico without any preliminary experimental data. Binding of the each modeled aptamer to the RBD was studied in terms of interactions between residues in protein and nucleotides in the aptamers. Based on the simulation results, the strongest binding with the RBD was predicted for two Apt27 and Apt31aptamers. The calculated results are in good agreement with experimental data obtained by flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods. Conclusion. The proposed computational approach to selection and refinement of aptamers is universal and can be used for wide range of molecular ligands and targets. Key words

    Transfer of synthetic human chromosome into human induced pluripotent stem cells for biomedical applications

    Get PDF
    Alphoid(tetO)-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver copies of genes into patients with genetic diseases caused by the loss of a particular gene function. The alphoid(tetO)-HAC vector has been successfully transferred into murine embryonic stem cells (ESCs) and maintained stably as an independent chromosome during the proliferation and differentiation of these cells. Human ESCs and iPSCs have significant differences in culturing conditions and pluripotency state in comparison with the murine naïve-type ESCs and iPSCs. To date, transferring alphoid(tetO)-HAC vector into human iPSCs (hiPSCs) remains a challenging task. In this study, we performed the microcell-mediated chromosome transfer (MMCT) of alphoid(tetO)-HAC expressing the green fluorescent protein into newly generated hiPSCs. We used a recently modified MMCT method that employs an envelope protein of amphotropic murine leukemia virus as a targeting cell fusion agent. Our data provide evidence that a totally artificial vector, alphoid(tetO)-HAC, can be transferred and maintained in human iPSCs as an independent autonomous chromosome without affecting pluripotent properties of the cells. These data also open new perspectives for implementing alphoid(tetO)-HAC as a gene therapy tool in future biomedical applications

    Tryptophan hydroxylase-2-mediated serotonin biosynthesis suppresses cell reprogramming into pluripotent state

    Get PDF
    The monoamine neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) has important functions both in the neural system and during embryonic development in mammals. In this study, we set out to investigate whether and how endogenous serotonin affects reprogramming to pluripotency. As serotonin is synthesized from tryptophan by the rate limiting enzymes tryptophan hydroxylase-1 and -2 (TPH1 and TPH2), we have assessed the reprogramming of TPH1- and/or TPH2-deficient mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells (iPSCs). The reprogramming of the double mutant MEFs showed a dramatic increase in the efficiency of iPSC generation. In contrast, ectopic expression of TPH2 alone or in conjunction with TPH1 reverted the rate of reprogramming of the double mutant MEFs to the wild-type level and besides, TPH2 overexpression significantly suppressed reprogramming of wild-type MEFs. Our data thus suggest a negative role of serotonin biosynthesis in the reprogramming of somatic cells to a pluripotent state
    corecore