375 research outputs found

    Error Corrective Boosting for Learning Fully Convolutional Networks with Limited Data

    Full text link
    Training deep fully convolutional neural networks (F-CNNs) for semantic image segmentation requires access to abundant labeled data. While large datasets of unlabeled image data are available in medical applications, access to manually labeled data is very limited. We propose to automatically create auxiliary labels on initially unlabeled data with existing tools and to use them for pre-training. For the subsequent fine-tuning of the network with manually labeled data, we introduce error corrective boosting (ECB), which emphasizes parameter updates on classes with lower accuracy. Furthermore, we introduce SkipDeconv-Net (SD-Net), a new F-CNN architecture for brain segmentation that combines skip connections with the unpooling strategy for upsampling. The SD-Net addresses challenges of severe class imbalance and errors along boundaries. With application to whole-brain MRI T1 scan segmentation, we generate auxiliary labels on a large dataset with FreeSurfer and fine-tune on two datasets with manual annotations. Our results show that the inclusion of auxiliary labels and ECB yields significant improvements. SD-Net segments a 3D scan in 7 secs in comparison to 30 hours for the closest multi-atlas segmentation method, while reaching similar performance. It also outperforms the latest state-of-the-art F-CNN models.Comment: Accepted at MICCAI 201

    Efficient Active Learning for Image Classification and Segmentation using a Sample Selection and Conditional Generative Adversarial Network

    Get PDF
    Training robust deep learning (DL) systems for medical image classification or segmentation is challenging due to limited images covering different disease types and severity. We propose an active learning (AL) framework to select most informative samples and add to the training data. We use conditional generative adversarial networks (cGANs) to generate realistic chest xray images with different disease characteristics by conditioning its generation on a real image sample. Informative samples to add to the training set are identified using a Bayesian neural network. Experiments show our proposed AL framework is able to achieve state of the art performance by using about 35% of the full dataset, thus saving significant time and effort over conventional methods

    Representation learning for cross-modality classification

    Get PDF
    Differences in scanning parameters or modalities can complicate image analysis based on supervised classification. This paper presents two representation learning approaches, based on autoencoders, that address this problem by learning representations that are similar across domains. Both approaches use, next to the data representation objective, a similarity objective to minimise the difference between representations of corresponding patches from each domain. We evaluated the methods in transfer learning experiments on multi-modal brain MRI data and on synthetic data. After transforming training and test data from different modalities to the common representations learned by our methods, we trained classifiers for each of pair of modalities. We found that adding the similarity term to the standard objective can produce representations that are more similar and can give a higher accuracy in these cross-modality classification experiments

    Classification of Chest Diseases using Wavelet Transforms and Transfer Learning

    Full text link
    Chest X-ray scan is a most often used modality by radiologists to diagnose many chest related diseases in their initial stages. The proposed system aids the radiologists in making decision about the diseases found in the scans more efficiently. Our system combines the techniques of image processing for feature enhancement and deep learning for classification among diseases. We have used the ChestX-ray14 database in order to train our deep learning model on the 14 different labeled diseases found in it. The proposed research shows the significant improvement in the results by using wavelet transforms as pre-processing technique.Comment: 8 pages, 4 figures, Presented in International Conference On Medical Imaging And Computer-Aided Diagnosis (MICAD 2020), proceeding will be published with Springer in their "Lecture Notes in Electrical Engineering (LNEE)" (ISSN: 1876-1100

    3D deep convolutional neural network-based ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI

    Get PDF
    Hyperpolarized gas MRI enables visualization of regional lung ventilation with high spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning (DL) has shown promising results for numerous segmentation problems. In this work, we evaluate a 3D V-Net to segment ventilated lung regions on hyperpolarized gas MRI scans. The dataset consists of 743 helium-3 (3He) or xenon-129 (129Xe) volumetric scans and corresponding expert segmentations from 326 healthy subjects and patients with a wide range of pathologies. We evaluated segmentation performance for several DL experimental methods via overlap, distance and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. We observed that training on combined 3He and 129Xe MRI scans outperformed other DL methods, achieving a mean ± SD Dice of 0.958 ± 0.022, average boundary Hausdorff distance of 2.22 ± 2.16 mm, Hausdorff 95th percentile of 8.53 ± 12.98 mm and relative error of 0.087 ± 0.049. Moreover, no difference in performance was observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe and 3He yielded statistically significant improvements over the conventional methods (p < 0.0001). The DL approach evaluated provides accurate, robust and rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such as the airways and noise artifacts and is expected to eliminate the need for, or significantly reduce, subsequent time-consuming manual editing

    Performance Evaluation of Manifold Algorithms on a P300 Paradigm Based Online BCI Dataset

    Get PDF
    Healthcare field is highly benefited by incorporating BCI for detection and diagnosis of some health related detriment as well as rehabilitation and restoration of certain disabilities. An EEG dataset acquired from 15 high-functioning ASD patients, while they were undergoing a P300 experiment in a virtual reality platform, was analysed in this paper using three algorithms. Performance of Bayes Linear Discriminant Analysis (BLDA) was predominant over Convolutional Neural Network (CNN) and Random Undersampling (RUS) Boosting. BLDA rendered 73% overall accuracy in predicting target and the best accuracy for each subject using CNN or BLDA yielded an overall accuracy of 76%

    Endoscopic Polyp Segmentation Using a Hybrid 2D/3D CNN

    Get PDF
    Colonoscopy is the gold standard for early diagnosis and pre-emptive treatment of colorectal cancer by detecting and removing colonic polyps. Deep learning approaches to polyp detection have shown potential for enhancing polyp detection rates. However, the majority of these systems are developed and evaluated on static images from colonoscopies, whilst applied treatment is performed on a real-time video feed. Non-curated video data includes a high proportion of low-quality frames in comparison to selected images but also embeds temporal information that can be used for more stable predictions. To exploit this, a hybrid 2D/3D convolutional neural network architecture is presented. The network is used to improve polyp detection by encompassing spatial and temporal correlation of the predictions while preserving real-time detections. Extensive experiments show that the hybrid method outperforms a 2D baseline. The proposed architecture is validated on videos from 46 patients. The results show that real-world clinical implementations of automated polyp detection can benefit from the hybrid algorithm

    Efficient Active Learning for Image Classification and Segmentation using a Sample Selection and Conditional Generative Adversarial Network

    Get PDF
    Training robust deep learning (DL) systems for medical image classification or segmentation is challenging due to limited images covering different disease types and severity. We propose an active learning (AL) framework to select most informative samples and add to the training data. We use conditional generative adversarial networks (cGANs) to generate realistic chest xray images with different disease characteristics by conditioning its generation on a real image sample. Informative samples to add to the training set are identified using a Bayesian neural network. Experiments show our proposed AL framework is able to achieve state of the art performance by using about 35% of the full dataset, thus saving significant time and effort over conventional methods

    LAMP: Large Deep Nets with Automated Model Parallelism for Image Segmentation

    Full text link
    Deep Learning (DL) models are becoming larger, because the increase in model size might offer significant accuracy gain. To enable the training of large deep networks, data parallelism and model parallelism are two well-known approaches for parallel training. However, data parallelism does not help reduce memory footprint per device. In this work, we introduce Large deep 3D ConvNets with Automated Model Parallelism (LAMP) and investigate the impact of both input's and deep 3D ConvNets' size on segmentation accuracy. Through automated model parallelism, it is feasible to train large deep 3D ConvNets with a large input patch, even the whole image. Extensive experiments demonstrate that, facilitated by the automated model parallelism, the segmentation accuracy can be improved through increasing model size and input context size, and large input yields significant inference speedup compared with sliding window of small patches in the inference. Code is available\footnote{https://monai.io/research/lamp-automated-model-parallelism}.Comment: MICCAI 2020 Early Accepted paper. Code is available\footnote{https://monai.io/research/lamp-automated-model-parallelism
    • …
    corecore