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Abstract. Differences in scanning parameters or modalities can com-
plicate image analysis based on supervised classification. This paper
presents two representation learning approaches, based on autoencoders,
that address this problem by learning representations that are similar
across domains. Both approaches use, next to the data representation
objective, a similarity objective to minimise the difference between rep-
resentations of corresponding patches from each domain. We evaluated
the methods in transfer learning experiments on multi-modal brain MRI
data and on synthetic data. After transforming training and test data
from different modalities to the common representations learned by our
methods, we trained classifiers for each of pair of modalities. We found
that adding the similarity term to the standard objective can produce
representations that are more similar and can give a higher accuracy in
these cross-modality classification experiments.
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1 Introduction

Most classification techniques assume that they will be applied to data that
comes from the same domain as the training data. In practice it may be nec-
essary to use training data from a different domain. In medical image analysis,
for example, it may happen that annotated training data is available but comes
from a different scanner, or was made with different scanning protocols or differ-
ent imaging modalities. Transfer learning methods handle these differences by
transferring the knowledge learned in one domain and applying it to data from
another domain. Some approaches do this by transforming the feature spaces,
while others use instance weighting to give larger weights to training samples
that look more similar to the target data (see [1] for a recent overview).

This paper proposes two representation learning approaches for transfer learn-
ing and applies those to a medical imaging problem. Representation learning [2]
methods learn efficient, data-driven representations of the training data and
have shown good results in same-domain applications. We use these techniques
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to learn cross-domain representations that are not just efficient descriptions of
the data, but are also similar across domains.

There is an obvious trade-off between learning a representation that provides
efficient descriptions of data from one domain and learning a representation
that is similar between domains. We discuss a hybrid learning objective that
combines a standard representation learning objective, which tries to learn an
efficient representation, with a similarity objective that minimises cross-domain
differences. We use a weighted combination to find an optimal trade-off.

We suggest two models: a set of domain-specific autoencoders and an axial
neural network. Both approaches learn a common representation, with a separate
transformation for each domain. With autoencoders, this is achieved by training
a separate autoencoder for each domain, whereas the axial neural network uses
a single network that combines inputs from all domains. For both models, we
include a similarity term in the learning objective to minimise the representation
difference between corresponding samples from each domain.

Previous work on the combination of representation learning and transfer
learning in medical image analysis can be separated in several groups. A popu-
lar approach is to transfer feature descriptors. These approaches reuse features
that were learned from images from another domain, such as natural images
or a different medical image dataset, and apply those to the target data with
data-specific fine-tuning (e.g., [3,4]), but do not generally train cross-domain
classifiers. Another group of approaches does train on data from different do-
mains, but does so with a single feature transformation for all domains. Siamese
networks [5], neural networks that are trained on data from different domains in
parallel, fall in this category. These models are somewhat similar to the networks
discussed in this paper, since both types of models are trained on paired samples.
However, our methods learn a different transformation for each domain, which
may work better if the domains are dissimilar.

We performed our experiments on data from the BRATS tumor segmentation
challenge [6]. This multi-modal dataset contains brain scans made with four MRI
sequences and manual annotations. In addition, we present experiments on a syn-
thetic dataset derived from the BRATS images. Using the representations learned
by our methods as the features, wemeasured the classification performance of ran-
dom forest classifiers trained on data from one sequence and applied to another.

The rest of this paper is organised as follows. Section 2 describes our methods.
The data and experiments are discussed in sections 3 and 4 and the results in
section 5. We end with a discussion and conclusion.

2 Methods

In order to learn the similarities between the different modalities, we assume
that our dataset has corresponding samples from each modality. In practical
terms: we apply our methods to registered scans of the same subjects scanned
with each modality. This allows us to define learning objectives that minimise
the representation difference between corresponding patches from each modality.
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Fig. 1. We train a separate autoencoder
for each modality, with a similarity term
that connects the central hidden layers
across modalities.
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Fig. 2. The axial neural network con-
nects all modalities in a central axis,
combining all inputs to get a common
representation.

2.1 Autoencoders

Autoencoders [7] are multi-layer neural networks that consist of an input layer, a
number of hidden layers and an output layer, with weighted directed connections
between nodes in subsequent layers (Fig. 1). The input of the network is an image
patch, with each node in the input layer representing one voxel. The first few
hidden layers, the encoding part, compute an increasingly small representation of
the input. The remaining layers form the decoding part and have an increasing
number of nodes, up to the output layer that has the same number of nodes
as the input. The network is trained to reconstruct the input, and because the
number of nodes in the smallest hidden layer is limited, the model is forced to
learn a concise representation of the data. This representation in the central
hidden layer can be used as the feature vector for a classifier.

We used autoencoders with rectified linear units (ReLUs) [8] as the hidden
nodes and nodes with a linear activation function for the final output layer. The
connection weights of the encoding layers were shared by the decoding layers,
but the biases of the encoding and decoding parts were independent.

For our experiments on multi-modal data, we trained a separate autoencoder
for each of the M modalities. We have corresponding patches in each modality
such that sample xm,i contains the voxel values for patch i in modality m. We
denote the values of the central hidden layer of the network for modality m given
sample i by fm (xm,i). Denote the values at the output layer by gm (fm (xm,i)).
The network for modality m is trained to minimise the mean reconstruction
error over all of the N training samples:

Lerr,m =

N∑
i=1

|gm (fm (xm,i))− xm,i| . (1)
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2.2 Learning similar representations

Training a separate autoencoder for each modality makes it possible to learn a
different transformation for each modality, but does not learn a common repre-
sentation across modalities. We extend the standard learning objective (1) with
a similarity term that minimises the difference between the representation of a
patch in one modality and its mean representation across modalities. We define
the similarity objective for modality m as

Lsim,m =

N∑
i=1

∣∣∣∣∣fm (xm,i)−
1

M

M∑
m′=1

fm′ (xm′,i)

∣∣∣∣∣ . (2)

We combine this similarity objective with the standard autoencoder objective
(1) to form a hybrid learning objective

Lcombined,m = αLsim,m + (1− α)Lerr,m (3)

where the similarity weight α determines the trade-off between the representation
error and the similarity objective. We vary this parameter in our experiments.

2.3 Axial neural networks

The axial neural network (Fig. 2) is a single model that combines all modalities.
It has separate encoding layers for each modality, which are joined at a cen-
tral hidden layer where the incoming representations are averaged into a single,
shared representation. This shared representation is used as the input for the
decoding part, which is again separate for each modality. For modality m, given
the modality-specific encodings fm′ , the output is defined as

gm

(
1

M

M∑
m′=1

fm′ (xm′,i)

)
. (4)

Averaging over the representations encourages the model to learn a common
representation that is similar across modalities. The network is trained using a
learning objective that minimises the reconstruction error for each modality:

Lerr =
N∑
i=1

M∑
m=1

∣∣∣∣∣gm
(

1

M

M∑
m′=1

fm′ (xm′,i)

)
− xm,i

∣∣∣∣∣ . (5)

Similar to the approach with multiple autoencoders (3), the standard learning
objective (5) can be combined with an additional similarity objective to explicitly
minimise the differences between the representations coming from each modality:

Lsim =

N∑
i=1

M∑
m=1

∣∣∣∣∣fm (xm,i)−
1

M

M∑
m′=1

fm′ (xm′,i)

∣∣∣∣∣ and (6)

Lcombined = αLsim + (1− α)Lerr. (7)
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3 Data

We use data of 30 subjects from the BRATS tumor segmentation challenge [6]
with four MRI sequences: T1, T1 post-contrast (T1+c), T2 and FLAIR (Fig. 3).
The scans of each subject are rigidly registered to the T1+c scan and resampled
to 1 mm isotropic resolution. The dataset contains brain masks and labels for
four tumor components, some of which can only be identified on one specific se-
quence or by comparing multiple sequences [9]. Because our experiments require
classes that can be identified on any single sequence, we grouped the four com-
ponents in one foreground class and used the other parts of the brain mask as
the background. For each subject we selected a balanced subset of 10 000 patches
(11 × 11 × 5 voxels) for each class, taken at random positions inside the brain
mask and at the same position for each sequence. We normalised each patch to
zero mean and unit variance. We used the patches from 20 subjects for training,
5 subjects for validation of the random forest parameters and 5 for testing.

T1 T1+c T2 FLAIR

Fig. 3. One slice of the BRATS dataset shown in the four MRI sequences.

We also present experiments with an artifical dataset derived from the BRATS
T1+c scans. Using four different MRI sequences makes it harder to see whether a
low across-sequence performance is due to the different intensity distribution or
simply because some structures are just not visible in one of the sequences. We
therefore constructed an artificial dataset by transforming the T1+c scans with
the exponential function f (I) = Iγ , where I is the voxel-wise intensity. Because
each of the alternative views is derived from the same original scan, each view
provides exactly the same information, but with a different distribution of inten-
sity values. Before applying the transformation, we scaled the intensity values to
fit between 0 and 1. We used the original intensities from the T1+c scan (γ = 1)
and generated three alternative views computed with γ = {1.5, 2, 3}. After the
transformation, each patch was normalised to zero mean and unit variance. We
used the same set of training and test scans as in the other experiments.

4 Experiments

In our experiments we trained the autoencoders and axial neural networks on the
patches in the BRATS dataset and the dataset with synthetic transformations.
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For both scenarios, we trained the models to learn a joint representation for the
four modalities. We evaluated multiple values for the weight of the similarity
term in the learning objective. Using the learned representation as the feature
vector, we then trained random forest classifiers and evaluated these by com-
puting the classification accuracy on the test set. We did this for each pair of
training and testing modalities.

We tried several network configurations for the autoencoders and axial neural
networks. We used networks with three or five hidden layers, with 100 or 200
nodes in the central layer and 200 to 500 in the others. The number of nodes in
the input and output layers was equal to the patch size, i.e., 11× 11× 5 = 605
nodes. We trained networks for each combination of these parameters and used
the performance on a held-out validation set to select the optimal combination.

As a baseline, we show the results of an approach that does not use differ-
ent transformations for data from different modalities: we combined the patches
from all modalities in one heterogeneous dataset and applied principal compo-
nent analysis (PCA). We selected the 100 or 200 most important components,
depending on the size of the network we compared with, to give the PCA baseline
the same number of features as our models.

The networks were implemented in Python using Theano [10]. We trained
the networks using stochastic gradient descent with a minibatch size of 50, for
300 epochs with various learning rates (0.0001, 0.001, 0.01 or 0.02). Based on
our observations of the reconstruction and similarity objectives, we selected the
networks with learning rates 0.001 and 0.01 for our classification experiments. We
used the random forest implementation from Scikit-learn [11] for classification,
with the number of trees (50, 75 or 100) optimised on the validation set.

5 Results

5.1 Synthetic transformations

First, we present the results on the T1+c data with synthetic transformations.
Figures 4 and 5 show the results averaged over the learning rates 0.02 and 0.01,
which gave the best results on the training and validation sets. Choosing a sim-
ilarity weight that is too large leads to suboptimal results, indicating that the
networks learn uninformative representations if the similarity term is too strong
and the reconstruction term too weak. For the smaller similarity weights, the
patterns are different for the same-modality and different-modality scenarios. For
same-modality training and test sets, learning representations that are similar
across modalities is not important. For different-modality training and test data,
the similarity term allows the models to learn similar representations for both
datasets. Choosing the right weight for the similarity term brings the performance
of different-modality training close to that of the same-modality baseline. This
shows that the models learn representations that are similar across modalities.
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Fig. 4. Results with autoencoders and synthetic transformations of the T1+c scans.
Classification accuracies (vertical axes) with features from autoencoders, for different
modality pairs (rows and columns) and different weights of the similarity term (hori-
zontal axes, 0 = no similarity). Dashed lines indicate the PCA result.
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Fig. 5. Results with axial neural networks and synthetic transformations of the T1+c
scans. Classification accuracies (vertical axes) with features from axial neural networks,
for different modality pairs (rows and columns) and weights of the similarity term
(horizontal axes, 0 = no similarity). Dashed lines indicate the PCA result.
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Fig. 6. Results with autoencoders and multi-modal BRATS data. Classification ac-
curacies (vertical axes) with features from autoencoders, for different modality pairs
(rows and columns) and different weights of the similarity term (horizontal axes, 0 =
no similarity). Dashed lines indicate the PCA result.

..

test on T1

.

t
r
.
o
n

T
1

.

53.0

.

60.2

.

63.1

.

test on T1+c

.

50.5

.

53.4

.

59.4

.

test on T2

.

45.1

.

50.3

.

53.0

.

test on FLAIR

.

50.1

.

50.7

.

53.1

.

t
r
.
o
n

T
1
+

c

.

50.3

.

53.4

.

61.6

.

53.1

.

62.1

.

62.9

.

45.3

.

50.0

.

53.1

.

49.0

.

51.7

.

53.2

.

t
r
.
o
n

T
2

.

49.2

.

49.5

.

53.4

.

49.3

.

52.2

.

53.4

.

53.0

.

69.0

.

72.1

.

48.2

.

54.9

.

58.8

.tr
.
o
n

F
L
A
IR

.

0
.0

.

0
.0

5

.

0
.1

.

0
.2

.

0
.4

.

0
.6

.

0
.8

.

1
.0

.46.7.
49.1
.
53.4

.

0
.0

.

0
.0

5

.

0
.1

.

0
.2

.

0
.4

.

0
.6

.

0
.8

.

1
.0

. 49.1.
51.0

.

53.4

.

0
.0

.

0
.0

5

.

0
.1

.

0
.2

.

0
.4

.

0
.6

.

0
.8

.

1
.0

. 48.0.

54.6

.

68.9

.

0
.0

.

0
.0

5

.

0
.1

.

0
.2

.

0
.4

.

0
.6

.

0
.8

.

1
.0

.
52.6

.

65.4

.

66.8

Fig. 7. Results with axial neural networks and multi-modal BRATS data. Classifica-
tion accuracies (vertical axes) with features from axial neural networks, for different
modality pairs (rows and columns) and weights of the similarity term (horizontal axes,
0 = no similarity). Dashed lines indicate the PCA result.
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5.2 Four MRI modalities

The results of the experiments on true multi-modal MRI data are shown in
Figs. 6 and 7. We show the results averaged over the network sizes and learning
rates (0.01 and 0.001). The results of the larger networks tended to be slightly
better than those of the smaller networks, but the overall trends were similar to
those shown here.

The best classification accuracy was found when the training and testing
modalities were the same (the plots on the top-left to bottom-right diagonal). In
these scenarios, using a larger weight for the similarity term and a lower weight
for the reconstruction error resulted in a lower classification accuracy. With
autoencoders, the performance remained relatively stable when the similarity
term was added with a small weight (0.1 or less). Overall, the best learned
representation often performed equal to or slightly better than the PCA baseline.

The performance in the cross-modality experiments was not as good as in
the single-modality experiments. However, adding the similarity term improved
the classification accuracy: a mixed learning objective with a small weight for
the similarity term performed better than just the representation objective.

In scenarios with different training and testing modalities, the representations
learned by our models usually gave a better classification accuracy than the
representations made with PCA. PCA worked better for the pairings T1/T1+c
and T2/FLAIR, perhaps because those sequences were more similar.

For the autoencoders, for certain modality pairs, the classification accuracy
peaked at a similarity weight of 0.05 or 0.1, which corresponds to the plateau
of the single-modality experiments. For other modality pairs, a larger similarity
component gave a better classification accuracy. A similar pattern appears in
the results for the axial neural networks.

6 Discussion and Conclusion

This paper introduced two representation learning approaches for learning sim-
ilar representations from dissimilar data, using an additional learning objective
that minimises representation differences for corresponding patches from differ-
ent modalities. Our experiments on multi-modal MRI data showed that, when
brain and test modalities are different, the representations learned with the sim-
ilarity objective could produce better classification results than with just the
normal learning objective. This effect was strongest in our experiments with
simulated modalities derived from a single image, but was also visible in exper-
iments on real multi-modal data.

Although adding the similarity objective can improve results, the weight of
the objective should be chosen carefully. Giving a large weight to the similar-
ity component favours learning a representation that is similar over learning a
representation that is good at describing the data. This might cause the model
to learn a trivial representation, such as all zeros, that may be similar across
modalities but is not very useful for classification.
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When training and testing on data from the same modality, adding the sim-
ilarity objective may also lead to a lower performance, especially if the weight
of the similarity objective is too large. For the autoencoders in our experiments,
adding the similarity objective in a same-domain problem did not significantly
decrease the accuracy if the weight of the similarity objective was small enough.
This is useful when training a single model for use with multiple modalities.

While training and testing on different modalities may be less relevant in
complete, multi-modal datasets such as BRATS, this scenario does have many
practical applications. For example, approaches such as those proposed here
allow data from different scanning protocols to be used for training a single
model. The methods could also be used to suppress differences between scans
made with scanners from different vendors. In multicenter studies it is possible
to pool data from different modalities in a single model, avoiding the variability
that may result from using separate models.

Cross-domain learning can only extract information that is visible in all do-
mains and will have problems learning a common representation for structures
visible in only one domain. The methods will therefore be most useful if the do-
mains provide similar information but have different appearances. This is visible
in the two sets of experiments in this paper. In the synthetic experiments, the
modalities were all derived from the same post-contrast T1 image. This meant
that each modality provided the same information – albeit with different in-
tensity distributions – and the models could learn a shared representation that
gave a good classification accuracy. In the experiments with real MRI modalities,
on the other hand, performance depended on the modality pair. For example,
post-contrast T1 was analyzed best by models trained on that modality. T2 and
the FLAIR appear to have more in common, but the cross-domain accuracy was
still below the same-domain accuracy. This suggests that each modality provides
additional information that is not available in the other modalities, which makes
it harder to learn a shared representation.

We compared our methods with a fairly simple baseline, principal component
analysis (PCA): by extracting the strongest variations in the data, PCA will
likely extract common features that are shared between sources. PCA performed
quite well for all modality pairs in our experiments on the synthetic dataset,
which suggests that PCA is able to learn the artificial transformation that we
applied there. This was not the case in our experiments on real multi-modal
data, where the differences between the modalities are much more intricate. The
power of PCA is limited because it has to use the same transformation for all
modalities. This makes it impossible to learn, for instance, if the contrast of one
of the modalities is inverted. In contrast, the methods proposed in this paper
would be able to model these more complex transformations.

A conceptual advantage of axial neural networks is that they combine data
from all domains in a single model, whereas autoencoders require an explicit
similarity objective. However, in our experiments we found that autoencoders
gave slightly better results, and that the performance of axial neural networks
improved if we added an explicit similarity term.
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Although the methods in this paper are unsupervised – the classifiers in
our experiments were trained after the transformations had been learned – the
general approach might also be applied with supervised methods, such as convo-
lutional neural networks. In our axial neural network, for example, the decoding
layers could be replaced by a set of output layers that compute class labels.

Using corresponding samples across domains is a powerful and efficient way
to learn common representations, but it requires paired training samples. This
data is available when, after introducing a new scanner, the same subject is
scanned on the old and the new scanner. If there is no paired data, but there is
labelled data from both domains, the class labels might provide a weaker form
of correspondence between samples from the same class. Without class labels it
may be possible to match the feature distribution of each domain.

In this paper we have shown two representation learning models that exploit
sample correspondences to learn a common representation for samples from dif-
ferent domains. Using the common representation, a classifier can be trained
on data from one domain and applied to data from another. Our experiments
showed that classifiers trained on this common representation can, depending on
the combination of modalities, achieve a higher accuracy than classifiers trained
without the common representation.
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