89 research outputs found
Reducing Risk for Illicit Drug Use and Prescription Drug Misuse: High School Gay-Straight Alliances and Lesbian, Gay, Bisexual, and Transgender Youth
Previous research suggests that lesbian, gay, bisexual, and transgender (LGBT) youth are at elevated risk for using illicit drugs and misusing prescription drugs relative to heterosexual youth. Previous research also indicates that LGBT youth who attend high schools with a gay-straight alliance (GSA) report having fewer alcohol problems and lower levels of cigarette smoking. The present study investigates whether the absence of a GSA is associated with risk for illicit drug use and prescription drug misuse in a sample of 475 LGBT high school students (M age = 16.79) who completed an online survey. After controlling for demographic variables and risk factors associated with illicit drug use, the results of 12 logistic regression analyses revealed that LGBT youth attending a high school without a GSA evidenced increased risk for using cocaine (adjusted odds ratio [adjOR] = 3.11; 95% confidence interval [95% CI] = 1.23–7.86), hallucinogens (adjOR = 2.59; 95% CI = 1.18–5.70), and marijuana (adjOR = 2.22; 95% CI = 1.37–3.59) relative to peers attending a high school with a GSA. Youth without a GSA also evidenced increased risk for the misuse of ADHD medication (adjOR = 2.00; 95% CI = 1.02–3.92) and prescription pain medication (adjOR = 2.00; 95% CI = 1.10–3.65). These findings extend the research base related to GSAs and further demonstrate the importance of providing LGBT youth with opportunities for socialization and support within the school setting. Important limitations of the present study are reviewed
Variability of black carbon mass concentrations, sub-micrometer particle number concentrations and size distributions: results of the German Ultrafine Aerosol Network ranging from city street to High Alpine locations
This work reports the first statistical analysis of multi-annual data on tropospheric aerosols from the German Ultrafine Aerosol Network (GUAN). Compared to other networks worldwide, GUAN with 17 measurement locations has the most sites equipped with particle number size distribution (PNSD) and equivalent black carbon (eBC) instruments and the most site categories in Germany ranging from city street/roadside to High Alpine. As we know, the variations of eBC and particle number concentration (PNC) are influenced by several factors such as source, transformation, transport and deposition. The dominant controlling factor for different pollutant parameters might be varied, leading to the different spatio-temporal variations among the measured parameters. Currently, a study of spatio-temporal variations of PNSD and eBC considering the influences of both site categories and spatial scale is still missing. Based on the multi-site dataset of GUAN, the goal of this study is to investigate how pollutant parameters may interfere with spatial characteristics and site categories
Recommended from our members
Primary versus secondary contributions to particle number concentrations in the European boundary layer
It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models
Primary Versus Secondary Contributions to Particle Number Concentrations in the European Boundary Layer
It is important to understand the relative contribution of primary and secondary particles to regional and global aerosol so that models can attribute aerosol radiative forcing to different sources. In large-scale models, there is considerable uncertainty associated with treatments of particle formation (nucleation) in the boundary layer (BL) and in the size distribution of emitted primary particles, leading to uncertainties in predicted cloud condensation nuclei (CCN) concentrations. Here we quantify how primary particle emissions and secondary particle formation influence size-resolved particle number concentrations in the BL using a global aerosol microphysics model and aircraft and ground site observations made during the May 2008 campaign of the European Integrated Project on Aerosol Cloud Climate Air Quality Interactions (EUCAARI). We tested four different parameterisations for BL nucleation and two assumptions for the emission size distribution of anthropogenic and wildfire carbonaceous particles. When we emit carbonaceous particles at small sizes (as recommended by the Aerosol Intercomparison project, AEROCOM), the spatial distributions of campaign-mean number concentrations of particles with diameter >50 nm (N50) and >100 nm (N100) were well captured by the model (R2≥0.8) and the normalised mean bias (NMB) was also small (−18% for N50 and −1% for N100). Emission of carbonaceous particles at larger sizes, which we consider to be more realistic for low spatial resolution global models, results in equally good correlation but larger bias (R2≥0.8, NMB = −52% and −29%), which could be partly but not entirely compensated by BL nucleation. Within the uncertainty of the observations and accounting for the uncertainty in the size of emitted primary particles, BL nucleation makes a statistically significant contribution to CCN-sized particles at less than a quarter of the ground sites. Our results show that a major source of uncertainty in CCN-sized particles in polluted European air is the emitted size of primary carbonaceous particles. New information is required not just from direct observations, but also to determine the "effective emission size" and composition of primary particles appropriate for different resolution models.JRC.H.2-Air and Climat
Slope hazard assessment on a coast road in New South Wales, Australia
Lawrence Hargrave Drive was constructed in 1878 and has experienced a continuance of slope failures including rock falls, debris flows and embankment collapses. In 2003 a section of the road was closed for safety reasons. An Alliance between the state government and private industry was formed to develop an engineering solution to reduce the risk to ‘acceptable’ levels. Assessment of slope hazards was completed with the aid of geological mapping, interpretation of aerial photographs, archived government reports, historical photo and newspaper collections and a GIS based landslide inventory. Historical photographs provided important evidence on erosion rates and the size, nature and frequency of landslide events. A landslide process rate model was developed for the site bringing together knowledge and judgments about erosion rates for the differing materials and landforms on the escarpment. Process rate curves were developed for slope units and integrated into a quantitative risk assessment
Landslide inventory and susceptibility zoning across SE Australia
A landmark Australian landslide research project, that will produce a series of medium-scale landslide inventory and susceptibility zoning datasets for substantial areas of Australia, is proposed. The project will produce a series of planning tools to facilitate the implementation of the AGS 2007 Landslide Risk Management (LRM) guidelines within government, and also address the new paradigm in risk management of due diligence. The project will also summarize the current variable status of landslide regulations around the country at both state and local government levels. This project will complement the earlier National Disaster Mitigation funding of the Australian Geomechanics Society and will address the difficulty in assembling a meaningful landslide inventory, essential for the development of susceptibility and hazard maps in landslide risk management practice. Susceptibility maps are seen as the best product from which to produce planning and development control areas for use in local government planning schemes addressing landslide issues. The development of a National Landslide Inventory framework would enhance data collection standards for this hazard across Australia. The costs associated with landslide damage and management are poorly documented within Australia and this project will also contribute to enhancing this element. Preliminary figures from early work in this area suggests government spending in the Wollongong area alone is at least $5 million annually since 1950 on landslide related costs. The project will also result in a series of regional to local zoning inventory and susceptibility zoning datasets and associated maps ranging from 1:250 000 and perhaps in some areas up to 1:25 000 scales for substantial areas of Australia. A modelling process will also be documented to promote transparency and to facilitate subsequent review and revisions. Achieving appropriate levels of funding to undertake this project remains a priority for the team. However, substantial elements are being developed already (some of which are summarized in this paper) and the authors are confident this project will come to fruition
- …