1,759 research outputs found

    Comparison of Radioimmuno and Carbon Nanotube Field-Effect Transistor Assays for Measuring Insulin-Like Growth Factor-1 in a Preclinical Model of Human Breast Cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To realize the promise of personalized medicine, diagnostic instruments used for detecting and measuring biomarkers must become smaller, faster and less expensive. Although most techniques used currently to detect biomarkers are sensitive and specific, many suffer from several disadvantages including their complexity, high cost and long turnaround time. One strategy to overcome these problems is to exploit carbon nanotube (CNT) based biosensors, which are sensitive, use inexpensive disposable components and can be easily adapted to current assay protocols. In this study we investigated the applicability of using a CNT field-effect transistor (CNT-FET) as a diagnostic instrument for measuring cancer biomarkers in serum using a mouse model of <it>Breast Cancer Susceptibility 1</it>-related breast cancer. Insulin like growth factor-1 (IGF-1) was chosen because it is highly relevant in breast cancer and because measuring serum IGF-1 levels by conventional methods is complicated due to specific IGF-1 serum binding proteins.</p> <p>Findings</p> <p>Our results show that there is good correlation between the two platforms with respect to detecting serum IGF-1. In fact, the CNT-FETs required only one antibody, gave real-time results and required approximately 100-fold less mouse serum than the radioimmunoassay.</p> <p>Conclusions</p> <p>Both IGF-1 radioimmuno and CNT-FET assays gave comparable results. Indeed, the CNT-FET assay was simpler and faster than the radioimmunoassay. Additionally, the low serum sample required by CNT-FETs can be especially advantageous for studies constricted by limited amount of human clinical samples and for mouse studies, since animals often need to be sacrificed to obtain enough serum for biomarker evaluation.</p

    Remote sensing of blood oxygenation using red-eye pupil reflection

    Get PDF
    To access publisher's full text version of this article click on the hyperlink belowObjective: To develop a technique for remote sensing of systemic blood oxygenation using red-eye pupil reflection. Approach: The ratio of the intensities of light from the bright pupil reflections at oxygen sensitive and isosbestic wavelengths is shown to be sensitive to the oxygenation of blood in the eye. A conventional retinal camera, fitted with an image-replicating imaging spectrometer, was used at standoff range to record snapshot spectral images of the face and eyes at eight different wavelengths. In our pilot study we measured optical-density ratios (ODRs) of pupil reflections at wavelengths of 780 nm and 800 nm, simultaneous with pulse oximetry, for ten healthy human subjects under conditions of normoxia and mild hypoxia (15% oxygen). The low absorption at these infrared wavelengths localises the sensing to the choroid. We propose that this can be used for as a proxy for systemic oximetry. Main results: A significant reduction (P < 0.001) in ODR of the pupil images was observed during hypoxia and returned to baseline on resumption of normoxia. We demonstrate that measurement of the choroidal ODR can be used to detect changes in blood oxygenation that correlate positively with pulse oximetry and with a noise-equivalent oximetry precision of 0.5%. Significance: We describe a new method to remotely and non-invasively sense the oxygen saturation of choroidal blood. The methodology provides a proxy for remote sensing of cerebral and systemic blood oxygenation. We demonstrate the technique at short range but it has potential for systemic oximetry at large standoff ranges

    Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial

    Get PDF
    Background: Dapagliflozin reduces the risk of kidney failure and heart failure in patients with chronic kidney disease. We aimed to investigate the effects of dapagliflozin on kidney, cardiovascular, and mortality outcomes according to presence or absence of type 2 diabetes and according to underlying cause of chronic kidney disease, reported as diabetic nephropathy, chronic glomerulonephritides, ischaemic or hypertensive chronic kidney disease, or chronic kidney disease of other or unknown cause. Methods: DAPA-CKD was a multicentre, double-blind, placebo-controlled, randomised trial done at 386 study sites in 21 countries, in which participants with a urinary albumin-to-creatinine ratio of 200–5000 mg/g and an estimated glomerular filtration rate (eGFR) of 25–75 mL/min per 1·73m2 were randomly assigned (1:1) to dapagliflozin 10 mg once daily or matching placebo, as an adjunct to standard care. The primary outcome was a composite of sustained decline in eGFR of at least 50%, end-stage kidney disease, or kidney-related or cardiovascular death. Secondary efficacy outcomes were a kidney-specific composite (the same as the primary outcome but excluding cardiovascular death), a composite of cardiovascular death or hospital admission for heart failure, and all-cause mortality. In this study, we conducted a prespecified subgroup analysis of the DAPA-CKD primary and secondary endpoints by presence or absence of type 2 diabetes and by aetiology of chronic kidney disease. DAPA-CKD is registered with ClinicalTrials.gov, NCT03036150. Findings: The study took place between Feb 2, 2017, and June 12, 2020. 4304 participants were randomly assigned (2152 to dapagliflozin and 2152 to placebo) and were followed up for a median of 2·4 years (IQR 2·0–2·7). Overall, 2906 (68%) participants had a diagnosis of type 2 diabetes, of whom 396 (14%) had chronic kidney disease ascribed to causes other than diabetic nephropathy. The relative risk reduction for the primary composite outcome with dapagliflozin was consistent in participants with type 2 diabetes (hazard ratio [HR] 0·64, 95% CI 0·52–0·79) and those without diabetes (0·50, 0·35–0·72; pinteraction=0·24). Similar findings were seen for the secondary outcomes: kidney-specific composite outcome (0·57 [0·45–0·73] vs 0·51 [0·34–0·75]; Pinteraction=0·57), cardiovascular death or hospital admission for heart failure (0·70 [0·53–0·92] vs 0·79 [0·40–1·55]; Pinteraction=0·78), and all-cause mortality (0·74 [0·56–0·98] vs 0·52 [0·29–0·93]; Pinteraction=0·25). The effect of dapagliflozin on the primary outcome was also consistent among patients with diabetic nephropathy (n=2510; HR 0·63, 95% CI 0·51–0·78), glomerulonephritides (n=695; 0·43, 0·26–0·71), ischaemic or hypertensive chronic kidney disease (n=687; 0·75, 0·44–1·26), and chronic kidney disease of other or unknown cause (n=412; 0·58, 0·29–1·19; Pinteraction=0·53), with similar consistency seen across the secondary outcomes. The proportions of participants in the dapagliflozin and placebo groups who had serious adverse events or discontinued study drug due to adverse events did not vary between those with and those without type 2 diabetes. Interpretation: Dapagliflozin reduces the risks of major adverse kidney and cardiovascular events and all-cause mortality in patients with diabetic and non-diabetic chronic kidney disease

    Effect of dapagliflozin on urinary albumin excretion in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial

    Get PDF
    BACKGROUND: Reductions in albuminuria are associated with a subsequent lower risk of kidney failure in patients with chronic kidney disease. The SGLT2 inhibitor dapagliflozin significantly reduced albuminuria in patients with type 2 diabetes and normal or near-normal kidney function. Whether this effect persists in patients with chronic kidney disease with and without type 2 diabetes is unknown. We assessed the effects of dapagliflozin on albuminuria in patients with chronic kidney disease with and without type 2 diabetes in the dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial. METHODS: DAPA-CKD was a multicentre, double-blind, placebo-controlled, randomised trial done at 386 sites in 21 countries. Patients were eligible for the trial if they had chronic kidney disease, defined as an estimated glomerular filtration rate (eGFR) between 25 mL/min per 1·73 m2 and 75 mL/min per 1·73 m2 and a urinary albumin-to-creatinine ratio (UACR) between 200 mg/g and 5000 mg/g (22·6 to 565·6 mg/mmol). Participants were randomly assigned to dapagliflozin 10 mg (AstraZeneca; Gothenburg, Sweden) once daily or matching placebo, in accordance with the sequestered, fixed randomisation schedule, using balanced blocks to ensure an approximate 1:1 ratio. Change in albuminuria was a pre-specified exploratory outcome of DAPA-CKD. Regression in UACR stage, defined as a transition from macroalbuminuria (≥300 mg/g) to microalbuminuria or normoalbuminuria (<300 mg/g), and progression in UACR stage, defined as a transition from less than 3000 mg/g to 3000 mg/g or greater, were additional discrete endpoints. The trial is registered with ClinicalTrials.gov, NCT03036150. FINDINGS: Between Feb 2, 2017, and April 3, 2020, 4304 patients were recruited and randomly assigned to either dapagliflozin (n=2152) or placebo (n=2152). Median UACR was 949 mg/g (IQR 477 to 1885). Overall, compared with placebo, dapagliflozin reduced geometric mean UACR by 29·3% (95% CI -33·1 to -25·2; p<0·0001); relative to placebo, treatment with dapagliflozin resulted in a geometric mean percentage change of -35·1% (95% CI -39·4 to -30·6; p<0·0001) in patients with type 2 diabetes and -14·8% (-22·9 to -5·9; p=0·0016) in patients without type 2 diabetes over the follow-up visits (pinteraction<0·0001) Among 3860 patients with UACR of 300 mg/g or greater at baseline, dapagliflozin increased the likelihood of regression in UACR stage (hazard ratio 1·81, 95% CI 1·60 to 2·05). Among 3820 patients with UACR less than 3000 mg/g at baseline, dapagliflozin decreased the risk of progression in UACR stage (0·41, 0·32 to 0·52). Larger reductions in UACR at day 14 during dapagliflozin treatment were significantly associated with attenuated eGFR decline during subsequent follow-up (β per log unit UACR change -3·06, 95% CI -5·20 to -0·90; p=0·0056). INTERPRETATION: In patients with chronic kidney disease with and without type 2 diabetes, dapagliflozin significantly reduced albuminuria, with a larger relative reduction in patients with type 2 diabetes. The similar effects of dapagliflozin on clinical outcomes in patients with or without type 2 diabetes, but different effects on UACR, suggest that part of the protective effect of dapagliflozin in patients with chronic kidney disease might be mediated through pathways unrelated to reduction in albuminuria. FUNDING: AstraZeneca

    A framework for interpreting genome-wide association studies of psychiatric disorders

    Get PDF
    Genome-wide association studies (GWAS) have yielded a plethora of new findings in the past 3 years. By early 2009, GWAS on 47 samples of subjects with attention-deficit hyperactivity disorder, autism, bipolar disorder, major depressive disorder and schizophrenia will be completed. Taken together, these GWAS constitute the largest biological experiment ever conducted in psychiatry (59 000 independent cases and controls, 7700 family trios and >40 billion genotypes). We know that GWAS can work, and the question now is whether it will work for psychiatric disorders. In this review, we describe these studies, the Psychiatric GWAS Consortium for meta-analyses of these data, and provide a logical framework for interpretation of some of the conceivable outcomes

    Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial

    Get PDF
    BACKGROUND: Dapagliflozin reduced the risk of kidney failure in patients with chronic kidney disease with and without type 2 diabetes in the DAPA-CKD trial. In this pre-specified analysis, we assessed the effect of dapagliflozin on the rate of change in estimated glomerular filtration rate (eGFR)-ie, the eGFR slope. METHODS: DAPA-CKD was a randomised controlled trial that enrolled participants aged 18 years or older, with or without type 2 diabetes, with a urinary albumin-to-creatinine ratio (UACR) of 200-5000 mg/g, and an eGFR of 25-75 mL/min per 1·73m2. Participants were randomly assigned (1:1) to oral dapagliflozin 10 mg once daily or placebo, added to standard care. In this pre-specified analysis, we analysed eGFR slope using mixed-effect models with different slopes from baseline to week 2 (acute eGFR decline), week 2 to end of treatment (chronic eGFR slope), and baseline to end of treatment (total eGFR slope). DAPA-CKD is registered with ClinicalTrials.gov, NCT03036150, and is now complete. FINDINGS: Between Feb 2, 2017, and April 3, 2020, 4304 participants were recruited, of whom 2152 (50%) were assigned to dapagliflozin and 2152 (50%) were assigned to placebo. At baseline, the mean age was 62 years (SD 12), 1425 (33·1%) participants were women, 2906 (67·5%) participants had type 2 diabetes. The median on-treatment follow-up was 2·3 years (IQR 1·8-2·6). From baseline to the end of treatment, dapagliflozin compared with placebo slowed eGFR decline by 0·95 mL/min per 1·73 m2 per year (95% CI 0·63 to 1·27) in the overall cohort. Between baseline and week 2, dapagliflozin compared with placebo resulted in an acute eGFR decline of 2·61 mL/min per 1·73 m2 (2·16 to 3·06) in patients with type 2 diabetes and 2·01 mL/min per 1·73 m2 (1·36 to 2·66) in those without type 2 diabetes. Between week 2 and end of treatment, dapagliflozin compared with placebo reduced the mean rate of eGFR decline by a greater amount in patients with type 2 diabetes (mean difference in chronic eGFR slope 2·26 mL/min per 1·73 m2 per year [1·88 to 2·64]) than in those without type 2 diabetes (1·29 mL/min per 1·73 m2 per year [0·73 to 1·85]; pinteraction=0·0049). Between baseline and end of treatment, the effect of dapagliflozin compared with placebo on the decline of total eGFR slope in patients with type 2 diabetes was 1·18 mL/min per 1·73 m2 per year (0·79 to 1·56) and without type 2 diabetes was 0·46 mL/min per 1·73 m2 per year (-0·10 to 1·03; pinteraction=0·040). The total eGFR slope was steeper in patients with higher baseline HbA1c and UACR; the effect of dapagliflozin on eGFR slope was also more pronounced in patients with higher baseline HbA1c and UACR. INTERPRETATION: Dapagliflozin significantly slowed long-term eGFR decline in patients with chronic kidney disease compared with placebo. The mean difference in eGFR slope between patients treated with dapagliflozin versus placebo was greater in patients with type 2 diabetes, higher HbA1c, and higher UACR. FUNDING: AstraZeneca

    De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia

    Get PDF
    A small number of rare, recurrent genomic copy number variants (CNVs) are known to substantially increase susceptibility to schizophrenia. As a consequence of the low fecundity in people with schizophrenia and other neurodevelopmental phenotypes to which these CNVs contribute, CNVs with large effects on risk are likely to be rapidly removed from the population by natural selection. Accordingly, such CNVs must frequently occur as recurrent de novo mutations. In a sample of 662 schizophrenia proband–parent trios, we found that rare de novo CNV mutations were significantly more frequent in cases (5.1% all cases, 5.5% family history negative) compared with 2.2% among 2623 controls, confirming the involvement of de novo CNVs in the pathogenesis of schizophrenia. Eight de novo CNVs occurred at four known schizophrenia loci (3q29, 15q11.2, 15q13.3 and 16p11.2). De novo CNVs of known pathogenic significance in other genomic disorders were also observed, including deletion at the TAR (thrombocytopenia absent radius) region on 1q21.1 and duplication at the WBS (Williams–Beuren syndrome) region at 7q11.23. Multiple de novos spanned genes encoding members of the DLG (discs large) family of membrane-associated guanylate kinases (MAGUKs) that are components of the postsynaptic density (PSD). Two de novos also affected EHMT1, a histone methyl transferase known to directly regulate DLG family members. Using a systems biology approach and merging novel CNV and proteomics data sets, systematic analysis of synaptic protein complexes showed that, compared with control CNVs, case de novos were significantly enriched for the PSD proteome (P=1.72 × 10−6). This was largely explained by enrichment for members of the N-methyl-D-aspartate receptor (NMDAR) (P=4.24 × 10−6) and neuronal activity-regulated cytoskeleton-associated protein (ARC) (P=3.78 × 10−8) postsynaptic signalling complexes. In an analysis of 18 492 subjects (7907 cases and 10 585 controls), case CNVs were enriched for members of the NMDAR complex (P=0.0015) but not ARC (P=0.14). Our data indicate that defects in NMDAR postsynaptic signalling and, possibly, ARC complexes, which are known to be important in synaptic plasticity and cognition, play a significant role in the pathogenesis of schizophrenia

    “Forward Genetics” as a Method to Maximize Power and Cost-Efficiency in Studies of Human Complex Traits

    Get PDF
    There is increasing interest in methods to disentangle the relationship between genotype and (endo)phenotypes in human complex traits. We present a population-based method of increasing the power and cost-efficiency of studies by selecting random individuals with a particular genotype and then assessing the accompanying quantitative phenotypes. Using statistical derivations, power- and cost graphs we show that such a “forward genetics” approach can lead to a marked reduction in sample size and costs. This approach is particularly apt for implementing in epidemiological studies for which DNA is already available but the phenotyping costs are high

    Genome-wide association scan meta-analysis identifies three Loci influencing adiposity and fat distribution.

    Get PDF
    To identify genetic loci influencing central obesity and fat distribution, we performed a meta-analysis of 16 genome-wide association studies (GWAS, N = 38,580) informative for adult waist circumference (WC) and waist-hip ratio (WHR). We selected 26 SNPs for follow-up, for which the evidence of association with measures of central adiposity (WC and/or WHR) was strong and disproportionate to that for overall adiposity or height. Follow-up studies in a maximum of 70,689 individuals identified two loci strongly associated with measures of central adiposity; these map near TFAP2B (WC, P = 1.9x10(-11)) and MSRA (WC, P = 8.9x10(-9)). A third locus, near LYPLAL1, was associated with WHR in women only (P = 2.6x10(-8)). The variants near TFAP2B appear to influence central adiposity through an effect on overall obesity/fat-mass, whereas LYPLAL1 displays a strong female-only association with fat distribution. By focusing on anthropometric measures of central obesity and fat distribution, we have identified three loci implicated in the regulation of human adiposity
    corecore