85 research outputs found
Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming
© 2018 Elsevier Ltd Addition of easily available organic substances to soil often increases the CO2 efflux from pre-existing soil carbon (C). This phenomenon is often explained in terms of the Nitrogen (N)-Mining Hypothesis. According to this proposed – but never conclusively proven – mechanism, increased C availability induces N limitation in microbes, which then access N by degrading soil organic matter (SOM) – a priming effect. This is supported by some experiments demonstrating reduced CO2 efflux after mineral N addition. However, amino acids cause priming, despite their very low C:N ratios and rapid deamination to mineral N. To explore this contradiction, we applied 14C- and 15N-labelled C and N sources (glucose, alanine and ammonium sulfate) to rigorously test two key predictions of the N-Mining Hypothesis: (i) an amino acid should stimulate much less priming than glucose, and (ii) priming should be similarly suppressed for an amino acid or a stoichiometrically equivalent addition of glucose plus mineral N. Both of these key predictions of the N-Mining Hypothesis failed. Efflux of CO2 from native C was essentially determined by the type and amount of C added, with alanine stimulating more priming than glucose (16–50% cumulative increase relative to control, versus 0–25%, respectively). Higher C additions caused more priming than low additions. Mineral N reduced native-C-derived CO2 efflux when added alone or with organic substrates, but this effect was independent of the organic C additions and did not influence C-induced priming. These results were inconsistent with the hypothesized role of N mining in priming. We conclude that the N-Mining Hypothesis, at least in its current form, is not a universal explanation for observed priming phenomena. Instead, we observed a strong correlation between the rates of priming and the mineralization of the added substrates, especially during the first 8 days. This indicated that priming was best explained by energy-induced synthesis of SOM-degrading exoenzymes, possibly in combination with apparent priming from accelerated turnover of microbial biomass
Voices Raised, Issue 06
Included in this issue: Immaculate Mary; Grants augment women’s research; Mentoring grows; Women’s Studies take root in the neighborhood; Solution-oriented VP to retire; Muslim students strive to educate, support; Don’t let stress ruin your holidays; Dining services dishes up more than you’d expect; Marianist Images Across Campus; Confronting Disrespect: We Owe it to Each Other.https://ecommons.udayton.edu/wc_newsletter/1005/thumbnail.jp
Construction, assembly and testing of the ATLAS hadronic end-cap calorimeter
The construction and assembly of the four wheels of the ATLAS hadronic end-cap calorimeter and their insertion into the two end-cap cryostats are described. The results of the qualification tests prior to installation of the two cryostats in the ATLAS experimental cavern are reviewed
A Purity Monitoring System for the H1 Liquid Argon Calorimeter
The ionization probes used for monitoring the liquid argon purity in the H1
calorimeter are described and results of their operation in tests at CERN and
during the period 1992 to the end of 1998 at HERA are given. The high
sensitivity of the charge measurements leads to refined charge collection
models, and to the observation of a variation of the ionization yield of our
electron sources with temperature.Comment: 26 pages, 14 figure
- …