25,143 research outputs found
A Cross-Linguistic Preference For Torso Stability In The Lexicon: Evidence From 24 Sign Languages
When the arms move in certain ways, they can cause the torso to twist or rock. Such extraneous torso movement is undesirable, especially during sign language communication, when torso position may carry linguistic significance, so we expend effort to resist it when it is not intended. This so-called “reactive effort” has only recently been identified by Sanders and Napoli (2016), but their preliminary work on three genetically unrelated languages suggests that the effects of reactive effort can be observed cross-linguistically by examination of sign language lexicons. In particular, the frequency of different kinds of manual movements in the lexicon correlates with the amount of reactive effort needed to resist movement of the torso. Following this line of research, we present evidence from 24 sign languages confirming that there is a cross-linguistic preference for minimizing the reactive effort needed to keep the torso stable
On The Linguistic Effects Of Articulatory Ease, With A Focus On Sign Languages
Spoken language has a well-known drive for ease of articulation, which Kirchner (1998, 2004) analyzes as reduction of the total magnitude of all biomechanical forces involved. We extend Kirchner\u27s insights from vocal articulation to manual articulation, with a focus on joint usage, and we discuss ways that articulatory ease might be realized in sign languages. In particular, moving more joints and/or joints more proximal to the torso results in greater mass being moved, and thus more articulatory force being expended, than moving fewer joints or moving more distal joints. We predict that in casual conversation, where articulatory ease is prized, moving fewer joints should be favored over moving more, and moving distal joints should be favored over moving proximal joints. We report on the results of our study of the casual signing of fluent signers of American Sign Language, which confirm our predictions: in comparison to citation forms of signs, the casual variants produced by the signers in our experiment exhibit an overall decrease in average joint usage, as well as a general preference for more distal articulation than is used in citation form. We conclude that all language, regardless of modality, is shaped by a fundamental drive for ease of articulation. Our work advances a cross-modality approach for considering ease of articulation, develops a potentially important vocabulary for describing variations in signs, and demonstrates that American Sign Language exhibits variation that can be accounted for in terms of ease of articulation. We further suggest that the linguistic drive for ease of articulation is part of a broader tendency for the human body to reduce biomechanical effort in all physical activities
Matter Wave Scattering from Ultracold Atoms in an Optical Lattice
We study matter wave scattering from an ultracold, many body atomic system
trapped in an optical lattice. We determine the angular cross section that a
matter wave probe sees and show that it is strongly affected by the many body
phase, superfluid or Mott insulator, of the target lattice. We determine these
cross sections analytically in the first Born approximation, and we examine the
variation at intermediate points in the phase transition by numerically
diagonalizing the Bose Hubbard Hamiltonian for a small lattice. We show that
matter wave scattering offers a convenient method for non-destructively probing
the quantum many body phase transition of atoms in an optical lattice.Comment: 4 pages, 2 figure
Envisioning Futures of Design Education: An Exploratory Workshop with Design Educator
The demand for innovation in the creative economy has seen the adoption and adaptation of design thinking and design methods into domains outside design, such as business management, education, healthcare, and engineering. Design thinking and methodologies are now considered useful for identifying, framing and solving complex, often wicked social, technological, economic and public policy problems. As the practice of design undergoes change, design education is also expected to adjust to prepare future designers to have dramatically different demands made upon their general abilities and bases of knowledge than have design career paths from years past. Future designers will have to develop skills and be able to construct and utilize knowledge that allows them to make meaningful contributions to collaborative efforts involving experts from disciplines outside design. Exactly how future designers should be prepared to do this has sparked a good deal of conjecture and debate in the professional and academic design communities.
This report proposes that the process of creating future scenarios that more broadly explore and expand the role, or roles, for design and designers in the world’s increasingly interwoven and interdependent societies can help uncover core needs and envision framework(s) for design education. This approach informed the creation of a workshop held at the Design Research Society conference in Brighton, UK in June of 2016, where six design educators shared four future scenarios that served as catalysts for conversations about the future of design education. Each scenario presented a specific future design education context. One scenario described the progression of design education as a core component of K-12 curricula; another scenario situated design at the core of a network of globally-linked local Universities; the third scenario highlighted the expanding role of designers over time; and the final scenario described a distance design education context that made learning relevant and “close” to an individual learner’s areas of interest. Forty participants in teams of up to six were asked to collaboratively visualize a possible future vision of design education based on one of these four scenarios and supported by a toolkit consisting of a set of trigger cards (with images and text), along with markers, glue and flipcharts. The collaborative visions that were jointly created as posters using the toolkit and then presented by the teams to all the workshop participants and facilitators are offered here as a case study. Although inspired by different scenarios, their collectively envisioned futures of what design education should facilitate displayed some key similarities. Some of those were:
Future design education curricula will focus on developing collaborative approaches within which faculty and students are co-learners;
These curricula will bring together ways of learning and knowing that stem from multiple disciplines; and
Learning in and about the natural environment will be a key goal (the specifics of how that would be accomplished were not elaborated upon.)
In addition, the need for transdisciplinarity was expressed across the collaborative visions created by each of the teams, but the manner that participants chose to express their ideas about this varied. Some envisioned that design would evolve by drawing on other disciplinary knowledge, and others envisioned that design would gradually integrate with other disciplines
Modulated amplitude waves with nonzero phases in Bose-Einstein condensates
In this paper we give a frame for application of the averaging method to
Bose-Einstein condensates (BECs) and obtain an abstract result upon the
dynamics of BECs. Using aver- aging method, we determine the location where the
modulated amplitude waves (periodic or quasi-periodic) exist and we also study
the stability and instability of modulated amplitude waves (periodic or
quasi-periodic). Compared with the previous work, modulated amplitude waves
studied in this paper have nontrivial phases and this makes the problem become
more diffcult, since it involves some singularities.Comment: 17 pages, 2 figure
A Bulk-Parallel Priority Queue in External Memory with STXXL
We propose the design and an implementation of a bulk-parallel external
memory priority queue to take advantage of both shared-memory parallelism and
high external memory transfer speeds to parallel disks. To achieve higher
performance by decoupling item insertions and extractions, we offer two
parallelization interfaces: one using "bulk" sequences, the other by defining
"limit" items. In the design, we discuss how to parallelize insertions using
multiple heaps, and how to calculate a dynamic prediction sequence to prefetch
blocks and apply parallel multiway merge for extraction. Our experimental
results show that in the selected benchmarks the priority queue reaches 75% of
the full parallel I/O bandwidth of rotational disks and and 65% of SSDs, or the
speed of sorting in external memory when bounded by computation.Comment: extended version of SEA'15 conference pape
Absolute absorption and fluorescence measurements over a dynamic range of 10 with cavity-enhanced laser-induced fluorescence
We describe a novel experimental setup that combines the advantages of both
laser-induced fluorescence and cavity ring-down techniques. The simultaneous
and correlated measurement of the ring-down and fluorescence signals yields
absolute absorption coefficients for the fluorescence measurement. The combined
measurement is conducted with the same sample in a single, pulsed laser beam.
The fluorescence measurement extends the dynamic range of a stand-alone cavity
ring-down setup from typically three to at least six orders of magnitude. The
presence of the cavity improves the quality of the signal, in particular the
signal-to-noise ratio. The methodology, dubbed cavity-enhanced laser-induced
fluorescence (CELIF), is developed and rigorously tested against the
spectroscopy of 1,4-bis(phenylethynyl)benzene in a molecular beam and density
measurements in a cell. We outline how the method can be utilised to determine
absolute quantities: absorption cross sections, sample densities and
fluorescence quantum yields.Comment: 12 pages, 6 figures, submitted to J. Chem. Phy
Structure and evolution of strange attractors in non-elastic triangular billiards
We study pinball billiard dynamics in an equilateral triangular table. In
such dynamics, collisions with the walls are non-elastic: the outgoing angle
with the normal vector to the boundary is a uniform factor
smaller than the incoming angle. This leads to contraction in phase space for
the discrete-time dynamics between consecutive collisions, and hence to
attractors of zero Lebesgue measure, which are almost always fractal strange
attractors with chaotic dynamics, due to the presence of an expansion
mechanism. We study the structure of these strange attractors and their
evolution as the contraction parameter is varied. For in
the interval (0, 1/3), we prove rigorously that the attractor has the structure
of a Cantor set times an interval, whereas for larger values of the
billiard dynamics gives rise to nonaccessible regions in phase space. For
close to 1, the attractor splits into three transitive components,
the basins of attraction of which have fractal basin boundaries.Comment: 12 pages, 10 figures; submitted for publication. One video file
available at http://sistemas.fciencias.unam.mx/~dsanders
- …