42 research outputs found

    Three Pathogens in Sympatric Populations of Pumas, Bobcats, and Domestic Cats: Implications for Infectious Disease Transmission

    Get PDF
    Anthropogenic landscape change can lead to increased opportunities for pathogen transmission between domestic and non-domestic animals. Pumas, bobcats, and domestic cats are sympatric in many areas of North America and share many of the same pathogens, some of which are zoonotic. We analyzed bobcat, puma, and feral domestic cat samples collected from targeted geographic areas. We examined exposure to three pathogens that are taxonomically diverse (bacterial, protozoal, viral), that incorporate multiple transmission strategies (vector-borne, environmental exposure/ingestion, and direct contact), and that vary in species-specificity. Bartonella spp., Feline Immunodeficiency Virus (FIV), and Toxoplasma gondii IgG were detected in all three species with mean respective prevalence as follows: puma 16%, 41% and 75%; bobcat 31%, 22% and 43%; domestic cat 45%, 10% and 1%. Bartonella spp. were highly prevalent among domestic cats in Southern California compared to other cohort groups. Feline Immunodeficiency Virus exposure was primarily associated with species and age, and was not influenced by geographic location. Pumas were more likely to be infected with FIV than bobcats, with domestic cats having the lowest infection rate. Toxoplasma gondii seroprevalence was high in both pumas and bobcats across all sites; in contrast, few domestic cats were seropositive, despite the fact that feral, free ranging domestic cats were targeted in this study. Interestingly, a directly transmitted species-specific disease (FIV) was not associated with geographic location, while exposure to indirectly transmitted diseases – vector-borne for Bartonella spp. and ingestion of oocysts via infected prey or environmental exposure for T. gondii – varied significantly by site. Pathogens transmitted by direct contact may be more dependent upon individual behaviors and intra-specific encounters. Future studies will integrate host density, as well as landscape features, to better understand the mechanisms driving disease exposure and to predict zones of cross-species pathogen transmission among wild and domestic felids

    An evaluation of the registration and use prospects for four candidate toxicants for controlling invasive mongooses (Herpestes javanicus auropunctatus)

    Get PDF
    The eradication or control of invasive small Indian mongooses from islands likely requires toxic baiting when removal by trapping proves insufficient. The one toxic bait currently registered for mongooses in the United States has relatively low palatability and efficacy for mongooses. Developing and registering a new pesticide can be very expensive, while funding for developing toxicants for mongooses is limited. Once registered, use of a toxic bait may be hindered by other factors, such as public opposition to an inhumane toxicant, poorer efficacy than expected, or if the toxic bait is difficult for applicators to apply or store. Therefore, we conducted a product feasibility assessment comparing the registration and use potential of toxic baits for mongooses containing either bromethalin, diphacinone, para-aminopropiophenone (PAPP), or sodium nitrite (SN). We estimated that a diphacinone bait would be the cheapest and fastest to register, and more application methods may be allowed compared to the others. On the negative side, we ranked diphacinone as the least humane toxicant of the four, largely due to a prolonged time to death following exposure and onset of symptoms. However, this interval also increases the probability that the antidote can be administered following an accidental exposure. If an alternative toxicant is required, use of a bromethalin, PAPP, or SN bait would likely be limited to bait stations or burrow baiting due to primary risks to non-target species. A bromethalin bait would be the cheapest and fastest to register of the three, particularly if a bait that is already commercially available proved efficacious for mongoose. However, we ranked bromethalin lower than PAPP or SN for overall humaneness. A PAPP bait would be slow and the most expensive to register. An SN bait would be challenging to formulate into a palatable bait with a reasonable shelf life. Although we focused on the U.S., mongooses are invasive in many parts of the world and the regulatory and use requirements for pesticides in other countries are generally comparable. In addition, our feasibility assessment can serve as a template or starting point for managers considering development of toxicant products for vertebrate pests

    Development and Testing of a Matrix for Mongoose Toxic Bait: Nontoxic Bait Acceptance Cage Trials

    Get PDF
    The only pesticide currently registered for mongoose control is a product developed for rats that consists of a hard-cereal bait block. Although the active ingredient (diphacinone) is known to be highly effective for mongoose, previous studies indicate that carnivorous and omnivorous mongooses do not readily consume the hard bait matrix designed for gnawing rodents. A palatable bait matrix with a consistency more appropriate to mongoose dentition and feeding behavior will be required to develop a more effective mongoose pesticide. We evaluated the acceptance and consumption of nontoxic versions of four candidate bait matrices: FOXECUTE® and FOXSHIELD® (Animal Control Technologies, Australia; ACTA); HOGGONE® (ACTA); and a potted pork shoulder loaf containing artificial dead mouse scent developed by WS-NWRC as a bait for invasive brown treesnakes (hereafter ‘BTS bait’). We offered test groups of six mongooses one of the candidate bait matrices alongside dry dog kibble dog food as a challenge diet for five days. Because the potential active ingredients para-aminopropiophenone and sodium nitrite require accumulation of the toxicant within a relatively brief period of time to affect lethal toxicity before they are metabolized, we conditioned mongooses to feeding within only a four-hour window rather than slowly sampling the bait throughout the day. We estimated rate and amount of consumption through review of time-lapse photography of feeding trials and measured total consumption by weighing uneaten portions of bait. From the first day offered, most mongooses readily consumed ample amounts of all four bait matrices and consumed almost no challenge diet. Overall, consumption was highest and most consistent with the BTS bait. Although this trial did not clearly discriminate an optimal bait matrix, this result is highly encouraging in that we have multiple palatable options. The final selection will be based on other characteristics of the bait matrix such as longevity in the field, compatibility with the selected toxicant, and ease of manufacture, storage, and use. We provide an overview of some of these characteristics for each candidate bait type

    Development and Testing of a Matrix for Mongoose Toxic Bait: Nontoxic Bait Acceptance Cage Trials

    Get PDF
    The only pesticide currently registered for mongoose control is a product developed for rats that consists of a hard-cereal bait block. Although the active ingredient (diphacinone) is known to be highly effective for mongoose, previous studies indicate that carnivorous and omnivorous mongooses do not readily consume the hard bait matrix designed for gnawing rodents. A palatable bait matrix with a consistency more appropriate to mongoose dentition and feeding behavior will be required to develop a more effective mongoose pesticide. We evaluated the acceptance and consumption of nontoxic versions of four candidate bait matrices: FOXECUTE® and FOXSHIELD® (Animal Control Technologies, Australia; ACTA); HOGGONE® (ACTA); and a potted pork shoulder loaf containing artificial dead mouse scent developed by WS-NWRC as a bait for invasive brown treesnakes (hereafter ‘BTS bait’). We offered test groups of six mongooses one of the candidate bait matrices alongside dry dog kibble dog food as a challenge diet for five days. Because the potential active ingredients para-aminopropiophenone and sodium nitrite require accumulation of the toxicant within a relatively brief period of time to affect lethal toxicity before they are metabolized, we conditioned mongooses to feeding within only a four-hour window rather than slowly sampling the bait throughout the day. We estimated rate and amount of consumption through review of time-lapse photography of feeding trials and measured total consumption by weighing uneaten portions of bait. From the first day offered, most mongooses readily consumed ample amounts of all four bait matrices and consumed almost no challenge diet. Overall, consumption was highest and most consistent with the BTS bait. Although this trial did not clearly discriminate an optimal bait matrix, this result is highly encouraging in that we have multiple palatable options. The final selection will be based on other characteristics of the bait matrix such as longevity in the field, compatibility with the selected toxicant, and ease of manufacture, storage, and use. We provide an overview of some of these characteristics for each candidate bait type
    corecore