277 research outputs found

    Impact of cardiac hybrid single-photon emission computed tomography/computed tomography imaging on choice of treatment strategy in coronary artery disease

    Get PDF
    Aims Cardiac hybrid imaging by fusing single-photon emission computed tomography (SPECT) myocardial perfusion imaging with coronary computed tomography angiography (CCTA) provides important complementary diagnostic information for coronary artery disease (CAD) assessment. We aimed at assessing the impact of cardiac hybrid imaging on the choice of treatment strategy selection for CAD. Methods and results Three hundred and eighteen consecutive patients underwent a 1 day stress/rest (99m)Tc-tetrofosmin SPECT and a CCTA on a separate scanner for evaluation of CAD. Patients were divided into one of the following three groups according to findings in the hybrid images obtained by fusing SPECT and CCTA: (i) matched finding of stenosis by CCTA and corresponding reversible SPECT defect; (ii) unmatched CCTA and SPECT finding; (iii) normal finding by both CCTA and SPECT. Follow-up was confined to the first 60 days after hybrid imaging as this allows best to assess treatment strategy decisions including the revascularization procedure triggered by its findings. Hybrid images revealed matched, unmatched, and normal findings in 51, 74, and 193 patients. The revascularization rate within 60 days was 41, 11, and 0% for matched, unmatched, and normal findings, respectively (P< 0.001 for all inter-group comparisons). Conclusion Cardiac hybrid imaging with SPECT and CCTA provides an added clinical value for decision making with regard to treatment strategy for CAD

    Long-Term Prognostic Impact of CT-Leaman Score in Patients with Non-Obstructive CAD: Results from the COronary CT Angiography EvaluatioN For Clinical Outcomes InteRnational Multicenter (CONFIRM) Study

    Get PDF
    BACKGROUND: Non-obstructive coronary artery disease (CAD) identified by coronary computed tomography angiography (CCTA) demonstrated prognostic value. CT-adapted Leaman score (CT-LeSc) showed to improve the prognostic stratification. Aim of the study was to evaluate the capability of CT-LeSc to assess long-term prognosis of patients with non-obstructive (CAD). METHODS: From 17 centers, we enrolled 2402 patients without prior CAD history who underwent CCTA that showed non-obstructive CAD and provided complete information on plaque composition. Patients were divided into a group without CAD and a group with non-obstructive CAD (<50% stenosis). Segment-involvement score (SIS) and CT-LeSc were calculated. Outcomes were non-fatal myocardial infarction (MI) and the combined end-point of MI and all-cause mortality. RESULTS: Patient mean age was 56±12years. At follow-up (mean 59.8±13.9months), 183 events occurred (53 MI, 99 all-cause deaths and 31 late revascularizations). CT-LeSc was the only multivariate predictor of MI (HRs 2.84 and 2.98 in two models with Framingham and risk factors, respectively) and of MI plus all-cause mortality (HR 2.48 and 1.94 in two models with Framingham and risk factors, respectively). This was confirmed by a net reclassification analysis confirming that the CT-LeSc was able to correctly reclassify a significant proportion of patients (cNRI 0.28 and 0.23 for MI and MI plus all-cause mortality, respectively) vs. baseline model, whereas SIS did not. CONCLUSION: CT-LeSc is an independent predictor of major acute cardiac events, improving prognostic stratification of patients with non-obstructive CAD.Dr. Min has served on themedical advisory boards Arineta; He is a consultant to Heart Flowand Cardiovascular Research Foundation; and has received research support from GE Healthcare.info:eu-repo/semantics/publishedVersio

    Prognostic value of adenosine stress cardiovascular magnetic resonance in patients with low-risk chest pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Approximately 5% of patients with an acute coronary syndrome are discharged from the emergency room with an erroneous diagnosis of non-cardiac chest pain. Highly accurate non-invasive stress imaging is valuable for assessment of low-risk chest pain patients to prevent these errors. Adenosine stress cardiovascular magnetic resonance (AS-CMR) is an imaging modality with increasing application. The goal of this study was to evaluate the negative prognostic value of AS-CMR among low-risk acute chest pain patients.</p> <p>Methods</p> <p>We studied 103 patients, mean 56.7 ± 12.3 years of age, with chest pain and no electrocardiographic evidence of ischemia and negative cardiac biomarkers of necrosis, who were admitted to the Cardiac Decision Unit of our institution. All patients underwent AS-CMR. A negative AS-CMR was defined as absence of all the following: regional wall motion abnormalities at rest; perfusion defects during stress (adenosine) and rest; and myocardial scar on late gadolinium enhancement images. The patients were followed for a mean of 277 (range 161-462) days. The primary end point was defined as the combination of cardiac death, nonfatal acute myocardial infarction, re-hospitalization for chest pain, obstructive coronary artery disease (>50% coronary stenosis on invasive angiography) and coronary revascularization.</p> <p>Results</p> <p>In 14 patients (13.6%), AS-CMR was positive. The remaining 89 patients (86.4%), who had negative AS-CMR, were discharged. No patient with negative AS-CMR reached the primary end-point during follow-up. The negative predictive value of AS-CMR was 100%.</p> <p>Conclusion</p> <p>AS-CMR holds promise as a useful tool to rule out significant coronary artery disease in patients with low-risk chest pain. Patients with negative AS-CMR have an excellent short and mid-term prognosis.</p

    Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography

    Get PDF
    International audienceBACKGROUND: Early detection of diastolic dysfunction is crucial for patients with incipient heart failure. Although this evaluation could be performed from phase-contrast (PC) cardiovascular magnetic resonance (CMR) data, its usefulness in clinical routine is not yet established, mainly because the interpretation of such data remains mostly based on manual post-processing. Accordingly, our goal was to develop a robust process to automatically estimate velocity and flow rate-related diastolic parameters from PC-CMR data and to test the consistency of these parameters against echocardiography as well as their ability to characterize left ventricular (LV) diastolic dysfunction. RESULTS: We studied 35 controls and 18 patients with severe aortic valve stenosis and preserved LV ejection fraction who had PC-CMR and Doppler echocardiography exams on the same day. PC-CMR mitral flow and myocardial velocity data were analyzed using custom software for semi-automated extraction of diastolic parameters. Inter-operator reproducibility of flow pattern segmentation and functional parameters was assessed on a sub-group of 30 subjects. The mean percentage of overlap between the transmitral flow segmentations performed by two independent operators was 99.7 ± 1.6%, resulting in a small variability ( 0.71) and receiver operating characteristic (ROC) analysis revealed their ability to separate patients from controls, with sensitivity > 0.80, specificity > 0.80 and accuracy > 0.85. Slight superiority in terms of correlation with echocardiography (r = 0.81) and accuracy to detect LV abnormalities (sensitivity > 0.83, specificity > 0.91 and accuracy > 0.89) was found for the PC-CMR flow-rate related parameters. CONCLUSIONS: A fast and reproducible technique for flow and myocardial PC-CMR data analysis was successfully used on controls and patients to extract consistent velocity-related diastolic parameters, as well as flow rate-related parameters. This technique provides a valuable addition to established CMR tools in the evaluation and the management of patients with diastolic dysfunction

    Incremental prognostic value of coronary computed tomography angiography over coronary calcium scoring for major adverse cardiac events in elderly asymptomatic individuals

    Get PDF
    Aims Coronary computed tomography angiography (CCTA) and coronary artery calcium score (CACS) have prognostic value for coronary artery disease (CAD) events beyond traditional risk assessment. Age is a risk factor with very high weight and little is known regarding the incremental value of CCTA over CAC for predicting cardiac events in older adults. Methods and results Of 27 125 individuals undergoing CCTA, a total of 3145 asymptomatic adults were identified. This study sample was categorized according to tertiles of age (cut-off points: 52 and 62 years). CAD severity was classified as 0, 1-49, and ≥50% maximal stenosis in CCTA, and further categorized according to number of vessels ≥50% stenosis. The Framingham 10-year risk score (FRS) and CACS were employed as major covariates. Major adverse cardiovascular events (MACE) were defined as a composite of all-cause death or non-fatal MI. During a median follow-up of 26 months (interquartile range: 18-41 months), 59 (1.9%) MACE occurred. For patients in the top age tertile, CCTA improved discrimination beyond a model included FRS and CACS (C-statistic: 0.75 vs. 0.70, P-value = 0.015). Likewise, the addition of CCTA improved category-free net reclassification (cNRI) of MACE in patients within the highest age tertile (e.g. cNRI = 0.75; proportion of events/non-events reclassified were 50 and 25%, respectively; P-value <0.05, all). CCTA displayed no incremental benefit beyond FRS and CACS for prediction of MACE in the lower age tertiles. Conclusion CCTA provides added prognostic value beyond cardiac risk factors and CACS for the prediction of MACE in asymptomatic older adults

    Incremental prognostic value of coronary computed tomography angiography over coronary calcium scoring for major adverse cardiac events in elderly asymptomatic individuals

    Get PDF
    Aims Coronary computed tomography angiography (CCTA) and coronary artery calcium score (CACS) have prognostic value for coronary artery disease (CAD) events beyond traditional risk assessment. Age is a risk factor with very high weight and little is known regarding the incremental value of CCTA over CAC for predicting cardiac events in older adults. Methods and results Of 27 125 individuals undergoing CCTA, a total of 3145 asymptomatic adults were identified. This study sample was categorized according to tertiles of age (cut-off points: 52 and 62 years). CAD severity was classified as 0, 1-49, and >= 50% maximal stenosis in CCTA, and further categorized according to number of vessels >= 50% stenosis. The Framingham 10-year risk score (FRS) and CACS were employed as major covariates. Major adverse cardiovascular events (MACE) were defined as a composite of all-cause death or non-fatal MI. During a median follow-up of 26 months (interquartile range: 18-41months), 59 (1.9%) MACE occurred. For patients in the top age tertile, CCTA improved discrimination beyond a model included FRS and CACS (C-statistic: 0.75 vs. 0.70, P-value = 0.015). Likewise, the addition of CCTA improved category-free net reclassification (cNRI) of MACE in patients within the highest age tertile (e.g. cNRI = 0.75; proportion of events/non-events reclassified were 50 and 25%, respectively; P-value <0.05, all). CCTA displayed no incremental benefit beyond FRS and CACS for prediction of MACE in the lower age tertiles. Conclusion CCTA provides added prognostic value beyond cardiac risk factors and CACS for the prediction of MACE in asymptomatic older adults
    corecore