6,332 research outputs found

    Entanglement Conservation, ER=EPR, and a New Classical Area Theorem for Wormholes

    Get PDF
    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throat separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. This theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.Comment: 16 pages, 2 figure

    Splitting Spacetime and Cloning Qubits: Linking No-Go Theorems across the ER=EPR Duality

    Get PDF
    We analyze the no-cloning theorem in quantum mechanics through the lens of the proposed ER=EPR (Einstein-Rosen = Einstein-Podolsky-Rosen) duality between entanglement and wormholes. In particular, we find that the no-cloning theorem is dual on the gravity side to the no-go theorem for topology change, violating the axioms of which allows for wormhole stabilization and causality violation. Such a duality between important no-go theorems elucidates the proposed connection between spacetime geometry and quantum entanglement.Comment: 6 pages, 2 figure

    Supermassive Black Holes from Ultra-Strongly Self-Interacting Dark Matter

    Get PDF
    We consider the cosmological consequences if a small fraction (f≲0.1f\lesssim 0.1) of the dark matter is ultra-strongly self-interacting, with an elastic self-interaction cross-section per unit mass σ≫1 cm2/g\sigma\gg1\ \mathrm{cm^{2}/g}. This possibility evades all current constraints that assume that the self-interacting component makes up the majority of the dark matter. Nevertheless, even a small fraction of ultra-strongly self-interacting dark matter (uSIDM) can have observable consequences on astrophysical scales. In particular, the uSIDM subcomponent can undergo gravothermal collapse and form seed black holes in the center of a halo. These seed black holes, which form within several hundred halo interaction times, contain a few percent of the total uSIDM mass in the halo. For reasonable values of σf\sigma f, these black holes can form at high enough redshifts to grow to ∼109M⊙\sim10^9 M_\odot quasars by z≳6z \gtrsim 6, alleviating tension within the standard Λ\LambdaCDM cosmology. The ubiquitous formation of central black holes in halos could also create cores in dwarf galaxies by ejecting matter during binary black hole mergers, potentially resolving the "too big to fail" problem.Comment: submitted to Ap

    Land landing couch dynamics computer program

    Get PDF
    Computer programs perform landing stability studies of mechanical impact system designs for advanced spacecraft. The programs consider variation in spacecraft vertical and horizontal velocity, attitude and orientation, shock strut load-stroke characteristics, and ground coefficient of friction

    Global Change and the Earth System

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94868/1/eost14816.pd

    Goethite on Mars - A laboratory study of physically and chemically bound water in ferric oxides

    Get PDF
    Thermogravimetric study of physically and chemically bound water in ferric oxides of limonite with application to goethite on Mar

    Wind tunnel studies of Martian aeolian processes

    Get PDF
    Preliminary results are reported of an investigation which involves wind tunnel simulations, geologic field studies, theoretical model studies, and analyses of Mariner 9 imagery. Threshold speed experiments were conducted for particles ranging in specific gravity from 1.3 to 11.35 and diameter from 10.2 micron to 1290 micron to verify and better define Bagnold's (1941) expressions for grain movement, particularly for low particle Reynolds numbers and to study the effects of aerodynamic lift and surface roughness. Wind tunnel simulations were conducted to determine the flow field over raised rim craters and associated zones of deposition and erosion. A horseshoe vortex forms around the crater, resulting in two axial velocity maxima in the lee of the crater which cause a zone of preferential erosion in the wake of the crater. Reverse flow direction occurs on the floor of the crater. The result is a distinct pattern of erosion and deposition which is similar to some martian craters and which indicates that some dark zones around Martian craters are erosional and some light zones are depositional

    Improvements in Space Geodesy Data Discovery at the CDDIS

    Get PDF
    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal
    • …
    corecore