40 research outputs found

    cDNA display: a novel screening method for functional disulfide-rich peptides by solid-phase synthesis and stabilization of mRNA–protein fusions

    Get PDF
    We report a robust display technology for the screening of disulfide-rich peptides, based on cDNA–protein fusions, by developing a novel and versatile puromycin-linker DNA. This linker comprises four major portions: a ‘ligation site’ for T4 RNA ligase, a ‘biotin site’ for solid-phase handling, a ‘reverse transcription primer site’ for the efficient and rapid conversion from an unstable mRNA–protein fusion (mRNA display) to a stable mRNA/cDNA–protein fusion (cDNA display) whose cDNA is covalently linked to its encoded protein and a ‘restriction enzyme site’ for the release of a complex from the solid support. This enables not only stabilizing mRNA–protein fusions but also promoting both protein folding and disulfide shuffling reactions. We evaluated the performance of cDNA display in different model systems and demonstrated an enrichment efficiency of 20-fold per selection round. Selection of a 32-residue random library against interleukin-6 receptor generated novel peptides containing multiple disulfide bonds with a unique linkage for its function. The peptides were found to bind with the target in the low nanomolar range. These results show the suitability of our method for in vitro selections of disulfide-rich proteins and other potential applications

    Aptamers as molecular recognition elements for electrical nanobiosensors

    Get PDF
    Recent advances in nanotechnology have enabled the development of nanoscale sensors that outperform conventional biosensors. This review summarizes the nanoscale biosensors that use aptamers as molecular recognition elements. The advantages of aptamers over antibodies as sensors are highlighted. These advantages are especially apparent with electrical sensors such as electrochemical sensors or those using field-effect transistors

    System stress testing of bank liquidity risk

    No full text
    Using a stress test methodology for bank liquidity risk we estimate the aggregate liquidity shortfall in the U.S. commercial banking system at the height of 2007–09 crisis, identifying key sources of funding vulnerabilities and the dominant composition of liquid asset holdings against liquidity shocks. The largest liquidity shocks to the system are estimated in the first half of the crisis, in line with Acharya and Mora (2015). Large banks experience the largest liquidity shortfall in 2008:Q1 (154billionor14154 billion or 14% of total assets) and small banks in 2007:Q4 (117 billion or 11% of total assets). The dominant funding vulnerability to the system stems from large time deposits, while government securities largely dominate other classes of liquid assets as liquidity backstop. The analysis draws on detailed bank-level data on balance sheet flows of funds and applies stochastic dominance efficiency methods to capture liquidity risk diversification effects across assets and liabilities. © 201

    Lipid-sensing high-throughput ApoA-I assays

    No full text
    Apolipoprotein A-I (ApoA-I), a primary protein component of high-density lipoprotein (HDL), plays an important role in cholesterol metabolism mediating the formation of HDL and the efflux of cellular cholesterol from macrophage foam cells in arterial walls. Lipidation of ApoA-I is mediated by adenosine triphosphate (ATP) binding cassette A1 (ABCA1). Insufficient ABCA1 activity may lead to increased risk of atherosclerosis due to reduced HDL formation and cholesterol efflux. The standard radioactive assay for measuring cholesterol transport to ApoA-I has low throughput and poor dynamic range, and it fails to measure phospholipid transfer. We describe the development of two sensitive, nonradioactive high-throughput assays that report on the lipidation of ApoA-I: a homogeneous assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) and a discontinuous assay that uses the label-free Epic platform. The TR-FRET assay employs HiLyte Fluor 647-labeled ApoA-I with N-terminal biotin bound to streptavidin-terbium. When fluorescent ApoA-I was incorporated into HDL, TR-FRET decreased proportionally to the increase in the ratio of lipids to ApoA-I, demonstrating that the assay was sensitive to the amount of lipid bound to ApoA-I. In the Epic assay, biotinylated ApoA-I was captured on a streptavidin-coated biosensor. Measured resonant wavelength shift was proportional to the amount of lipids associated with ApoA-I, indicating that the assay senses ApoA-I lipidation. \ua9 2012 Society for Laboratory Automation and Screening.Peer reviewed: YesNRC publication: Ye

    A small-Molecule inhibitor of hepatitis C virus infectivity

    No full text
    One of the most challenging goals of hepatitis C virus (HCV) research is to develop well-tolerated regimens with high cure rates across a variety of patient populations. Such a regimen will likely require a combination of at least two distinct direct-acting antivirals (DAAs). Combining two or more DAAs with different resistance profiles increases the number of mutations required for viral breakthrough. Currently, most DAAs inhibit HCV replication. We recently reported that the combination of two distinct classes of HCV inhibitors, entry inhibitors and replication inhibitors, prolonged reductions in extracellular HCV in persistently infected cells. We therefore sought to identify new inhibitors targeting aspects of the HCV replication cycle other than RNA replication. We report here the discovery of the first small-molecule HCV infectivity inhibitor, GS-563253, also called HCV infectivity inhibitor 1 (HCV II-1). HCV II-1 is a substituted tetrahydroquinoline that selectively inhibits genotype 1 and 2 HCVs withlow-nanomolar 50% effective concentrations. It was identified through a high-throughput screen and subsequent chemical optimization. HCV II-1 only permits the production and release of noninfectious HCV particles from cells. Moreover, infectious HCV is rapidly inactivated in its presence. HCV II-1 resistance mutations map to HCV E2. In addition, HCV-II prevents HCV endosomal fusion, suggesting that it either locks the viral envelope in its prefusion state or promotes a viral envelope conformation change incapable of fusion. Importantly, the discovery of HCV II-1 opens up a new class of HCV inhibitors that prolong viral suppression by HCV replication inhibitors in persistently infected cell cultures. 2014, American Society for Microbiology. All Rights Reserve

    The novel CaMKII inhibitor GS-680 reduces diastolic SR Ca leak and prevents CaMKII-dependent pro-arrhythmic activity

    No full text
    Rationale: Ca/calmodulin-dependent protein kinase II (CaMKII) was shown to increase diastolic sarcoplasmic reticulum (SR) Ca leak, which can result in delayed afterdepolarizations and triggered arrhythmias Since increased CaMKII expression and activity has been mechanistically linked to arrhythmias in human heart failure (HF) and atrial fibrillation (AF), specific strategies aimed at CaMKII inhibition may have therapeutic potential, Objective: We tested the antiarrhythmic and inotropic effects of a novel selective and ATP-competitive CaMKII inhibitor (GS-680). Methods and results: Trabeculae were isolated from right atrial appendage biopsies of patients undergoing cardiac surgery. Premature atrial contractions (PACs) were induced by stimulation with isoproterenol (ISO, 100 nM) at increased [Ca](o) (3.5 mM). Interestingly, compared to vehicle, PACs were significantly inhibited by exposure to GS-680 (at 100 and 300 nM). GS-680 also significantly decreased early and delayed afterdepolarizations in isolated human atrial myocytes. Moreover, GS-680 (at 100 or 300 nM) significantly inhibited diastolic SR Ca leak, measured as frequency of spontaneous SR Ca release events (Ca sparks) in isolated human atrial myocytes (Fluo-4 loaded) similar to the well-established peptide CaMKII inhibitor AIP. In accordance, GS 680 significantly reduced CaMKII autophosphorylation (Western blot) but enhanced developed tension after 10 or 30 s pause of electrical stimulation (post-rest behavior). Surprisingly, we found a strong negative inotropic effect of GS-680 in atrial trabeculae at 1 Hz stimulation rate, which was not observed at 4 Hz and abolished by beta-adrenergic stimulation. In contrast, GS-680 did not impair systolic force of isolated ventricular trabeculae from explanted hearts of heart transplant recipients at 1 Hz, blunted the negative force-frequency relationship (1-3 Hz) and significantly increased the Ca transient amplitude. Conclusion: The novel ATP-competitive and selective CaMKII inhibitor GS-680 inhibits pro-arrhythmic activity in human atrium and improves contractility in failing human ventricle, which may have therapeutic implications
    corecore