25,261 research outputs found

    The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations

    Get PDF
    The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using STIS, ACS and WFC3. We provide a new tabulation of the transmission spectrum across the entire visible and IR range. The radius ratio in each wavelength band was rederived to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models: it is dominated by Rayleigh scattering over the whole visible and near infrared range, the only detected features being narrow Na and K lines. We interpret this as the signature of a haze of condensate grains extending over at least 5 scale heights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6um, the small hot-spot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.Comment: Accepted for publication in MNRAS. 31 pages, 19 figures, 8 table

    A Chandra Survey of the X-ray Properties of Broad Absorption Line Radio-Loud Quasars

    Full text link
    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from SDSS/FIRST data and possessing a wide range of radio and CIV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. We also include in our sample 9 additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshot and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both disk-corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.Comment: 48 pages, 5 tables, 14 figures, accepted by Ap

    The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?

    Get PDF
    We report Gemini-North GMOS observations of the inflated hot Jupiter HAT-P-32b during two primary transits. We simultaneously observed two comparison stars and used differential spectro-photometry to produce multi-wavelength light curves. 'White' light curves and 29 'spectral' light curves were extracted for each transit and analysed to refine the system parameters and produce transmission spectra from 520-930nm in ~14nm bins. The light curves contain time-varying white noise as well as time-correlated noise, and we used a Gaussian process model to fit this complex noise model. Common mode corrections derived from the white light curve fits were applied to the spectral light curves which significantly improved our precision, reaching typical uncertainties in the transit depth of ~2x10^-4, corresponding to about half a pressure scale height. The low resolution transmission spectra are consistent with a featureless model, and we can confidently rule out broad features larger than about one scale height. The absence of Na/K wings or prominent TiO/VO features is most easily explained by grey absorption from clouds in the upper atmosphere, masking the spectral features. However, we cannot confidently rule out clear atmosphere models with low abundances (~10^-3 solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller scale height or ionisation could also contribute to muted spectral features, but alone are unable to to account for the absence of features reported here.Comment: 17 pages, 11 figures, 2 tables, accepted for publication in MNRA

    A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm

    Get PDF
    We report Gemini-South GMOS observations of the exoplanet system WASP-29 during primary transit as a test case for differential spectrophotometry. We use the multi-object spectrograph to observe the target star and a comparison star simultaneously to produce multiple light curves at varying wavelengths. The 'white' light curve and fifteen 'spectral' light curves are analysed to refine the system parameters and produce a transmission spectrum from 515 to 720nm. All light curves exhibit time-correlated noise, which we model using a variety of techniques. These include a simple noise rescaling, a Gaussian process model, and a wavelet based method. These methods all produce consistent results, although with different uncertainties. The precision of the transmission spectrum is improved by subtracting a common signal from all the spectral light curves, reaching a typical precision of ~1x10^-4 in transit depth. The transmission spectrum is free of spectral features, and given the non-detection of a pressure broadened Na feature, we can rule out the presence of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a narrow Na core. This indicates that Na is not present in the atmosphere, and/or that clouds/hazes play a significant role in the atmosphere and mask the broad wings of the Na feature, although the former is a more likely explanation given WASP-29b's equilibrium temperature of ~970 K, at which Na can form various compounds. We also briefly discuss the use of Gaussian process and wavelet methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected in version

    Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines

    Get PDF
    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-α\alpha and the He I 10830 {\AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.Comment: 15 pages, 5 figures, Frontiers in Astronomy and Space Sciences, 201

    A new look at NICMOS transmission spectroscopy of HD189733, GJ-436 and XO-1: no conclusive evidence for molecular features

    Full text link
    We present a re-analysis of archival HST/NICMOS transmission spectroscopy of three exoplanet systems; HD 189733, GJ-436 and XO-1. Detections of several molecules, including H20, CH4 and CO2, have been claimed for HD 189733 and XO-1, but similarly sized features are attributed to systematic noise for GJ-436. The data consist of time-series grism spectra covering a planetary transit. After extracting light curves in independent wavelength channels, we use a linear decorrelation technique account for instrumental systematics (which is becoming standard in the field), and measure the planet-to-star radius ratio as a function of wavelength. For HD 189733, the uncertainties in the transmission spectrum are significantly larger than those previously reported. We also find the transmission spectrum is considerably altered when using different out-of-transit orbits to remove the systematics, when some parameters are left out of the decorrelation procedure, or when we perform the decorrelation with quadratic functions rather than linear functions. Given that there is no physical reason to believe the baseline flux should be modelled as a linear function of any particular set of parameters, we interpret this as evidence that the linear decorrelation technique is not a robust method to remove systematic effects from the light curves for each wavelength channel. For XO-1, the parameters measured to decorrelate the light curves would require extrapolation to the in-transit orbit to remove the systematics, and we cannot reproduce the previously reported results. We conclude that the resulting NICMOS transmission spectra are too dependent on the method used to remove systematics to be considered robust detections of molecular species in planetary atmospheres, although the presence of these molecules is not ruled out.Comment: 17 pages, 28 figures, accepted in MNRA

    X-raying the Winds of Luminous Active Galaxies

    Full text link
    We briefly describe some recent observational results, mainly at X-ray wavelengths, on the winds of luminous active galactic nuclei (AGNs). These winds likely play a significant role in galaxy feedback. Topics covered include (1) Relations between X-ray and UV absorption in Broad Absorption Line (BAL) and mini-BAL quasars; (2) X-ray absorption in radio-loud BAL quasars; and (3) Evidence for relativistic iron K BALs in the X-ray spectra of a few bright quasars. We also mention some key outstanding problems and prospects for future advances; e.g., with the International X-ray Observatory (IXO).Comment: 7 pages, 3 figures, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi

    Evidence for massive bulk Dirac Fermions in Pb1x_{1-x}Snx_xSe from Nernst and thermopower experiments

    Full text link
    The lead chalcogenides (Pb,Sn)Te and (Pb,Sn)Se are the first examples of topological crystalline insulators (TCI) predicted \cite{Fu,Hsieh} (and confirmed \cite{Hasan,Story,Takahashi}) to display topological surface Dirac states (SDS) that are protected by mirror symmetry. A starting premise \cite{Hsieh} is that the SDS arise from bulk states describable as massive Dirac states \cite{Wallis,Svane}, but this assumption is untested. Here we show that the thermoelectric response of the bulk states display features specific to the Dirac spectrum. We show that, in the quantum limit, the lowest Landau Level (LL) is singly spin-degenerate, whereas higher levels are doubly degenerate. The abrupt change in spin degeneracy leads to a large step-decrease in the thermopower SxxS_{xx}. In the lowest LL, SxxS_{xx} displays a striking linear increase vs. magnetic field. In addition, the Nernst signal undergoes an anomalous sign change when the bulk gap inverts at 180 K.Comment: 16 pages, 8 figure
    corecore