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ABSTRACT
We report Gemini-South Gemini Multi-Object Spectrograph observations of the exoplanet
system WASP-29 during primary transit as a test case for differential spectrophotometry. We
use the multi-object spectrograph to observe the target star and a comparison star simultane-
ously to produce multiple light curves at varying wavelengths. The ‘white’ light curve and
15 ‘spectral’ light curves are analysed to refine the system parameters and produce a trans-
mission spectrum from ∼515 to 720 nm. All light curves exhibit time-correlated noise, which
we model using a variety of techniques. These include a simple noise rescaling, a Gaussian
process model and a wavelet-based method. These methods all produce consistent results,
although with different uncertainties. The precision of the transmission spectrum is improved
by subtracting a common signal from all the spectral light curves, reaching a typical precision
of ∼1 × 10−4 in transit depth. The transmission spectrum is free of spectral features, and
given the non-detection of a pressure broadened Na feature, we can rule out the presence
of a Na-rich atmosphere free of clouds or hazes, although we cannot rule out a narrow Na
core. This indicates that Na is not present in the atmosphere, and/or that clouds/hazes play a
significant role in the atmosphere and mask the broad wings of the Na feature, although the
former is a more likely explanation given WASP-29b’s equilibrium temperature of ∼970 K,
at which Na can form various compounds. We also briefly discuss the use of Gaussian process
and wavelet methods to account for time-correlated noise in transit light curves.

Key words: methods: data analysis – techniques: spectroscopic – stars: individual: WASP-
29 – planetary systems.

1 IN T RO D U C T I O N

The study of transiting exoplanets is rapidly advancing our under-
standing of planets beyond our own Solar system. Planets’ bulk
densities are obtained via measurement of the radius and mass us-
ing transits and radial velocity measurements; this is the first step
in understanding their structure and composition. However, to un-
derstand planetary systems more fully and explore their diversity
we need spectroscopic measurements of their atmospheres; luckily,
transiting planets allow such measurements without requiring the
star and planet to be spatially resolved.

Transmission spectroscopy is a measurement of the effective size
of the planet as a function of wavelength during primary transit. Due
to wavelength-dependent opacities in the atmosphere, the planet ap-

� E-mail: neale.gibson@astro.ox.ac.uk

pears larger at wavelengths where the atmosphere absorbs or scat-
ters light. We can therefore probe for the presence of atomic and
molecular species, as well as clouds or hazes (Seager & Sasselov
2000; Brown 2001). Until recently, transmission spectroscopy has
only been feasible using space-based telescopes, which have been
tremendously successful, particularly at optical wavelengths (e.g.
Charbonneau et al. 2002; Pont et al. 2008; Sing et al. 2008, 2011;
Huitson et al. 2012). Measurements in the near-infrared (NIR) have
proved more controversial, with different groups reporting con-
flicting conclusions from the same data set (e.g. Swain, Vasisht &
Tinetti 2008; Gibson, Pont & Aigrain 2011); however, advances in
data analysis techniques are starting to resolve the issue (e.g. Gibson
et al. 2012b; Waldmann 2012), along with the availability of more
stable NIR cameras such as WFC3 (e.g. Berta et al. 2012; Gibson
et al. 2012a).

Most recently, the use of a multi-object spectrograph (MOS)
to perform differential spectrophotometry has started to show that
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Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnras/article-abstract/428/4/3680/1007354
by guest
on 09 February 2018



Transmission spectroscopy of WASP-29b 3681

ground-based observations can also play an important role. This
technique was pioneered by Bean, Miller-Ricci Kempton & Home-
ier (2010), using the VLT to produce a transmission spectrum of the
super-Earth GJ 1214b. Such observations have benefited not only
from advances in observing strategy, but also from the availability
of new bright targets with nearby comparison stars. Similar obser-
vations have since been made in the NIR (Bean et al. 2011) and with
long-slit spectrographs (Sing et al. 2012). Here we report Gemini
observations of WASP-29 using this MOS technique.

WASP-29b (Hellier et al. 2010) is a Saturn-sized planet with a
mass and a radius of 0.24 ± 0.02 MJ and 0.79 ± 0.05 RJ, respec-
tively. It orbits a K4 dwarf with a period of ∼3.9 d. Given its
relatively low equilibrium temperature of ∼980 K, it does not have
a particularly large scale height compared to the hottest and low-
est density hot Jupiters. It was in fact chosen as a test case for
the Gemini Multi-Object Spectrograph (GMOS) instrument to test
its stability before more favourable targets are observed. WASP-29
has a nearby, bright comparison star, making it ideal for differential
photometry or spectroscopy.

Despite its recent successes, MOS differential spectroscopy, like
other techniques, is expected to suffer from correlated noise orig-
inating from poorly understood instrumental effects. Although the
differential nature of the measurements is intended to reduce this
problem, systematic effects are not yet fully understood for ground-
based differential photometry, and the extra complexity in spectro-
scopic work may introduce more systematic effects. In this paper,
we explore the use of several methods to analyse transit light curves
to obtain useful measurements in the presence of significant corre-
lated noise. These methods include the wavelet method of Carter &
Winn (2009) and the Gaussian process (GP) model of Gibson et al.
(2012b) adapted to model time-correlated noise.

This paper is structured as follows. Section 2 presents our obser-
vations and data reduction procedure, in Section 3 we present our
transit analysis methods, and finally in Sections 4 and 5 we present
our results and conclusions.

2 G M O S O B S E RVAT I O N S A N D DATA
R E D U C T I O N

A transit of WASP-29 was observed using the 8 m Gemini-South
telescope with the GMOS on 2011 October 19. Data were taken as
part of programme GS-2011B-Q-13 (PI: Gibson). GMOS has an
imaging field of view of 5.5 arcmin × 5.5 arcmin and consists of
three 2048 × 4608 pixel CCDs arranged side by side with small gaps
in-between. We used GMOS in multi-object mode to observe the
target plus two comparison stars simultaneously and continuously
for ∼5.1 h, covering the 2.66 h transit plus 1.5 h prior to ingress and
1.0 h after egress. Conditions were photometric for the duration of
the observations.

Observations used the R400 grism + OG515 filter with a central
wavelength of 725 nm. The dispersion is 0.07 nm per (unbinned)
pixel, giving wavelength coverage in the range ∼515–940 nm. Ex-
posure times were 30.5 s and 2 × 2 binning was used. The full-frame
readout of the GMOS chips in 2 × 2 binning is ∼55 s (in the rec-
ommended ‘slow’ readout). In order to reduce the overheads we
read out only three regions of interest (ROI) on the chip containing
the three stellar spectra, resulting in a readout time of ∼22 s, and
therefore a cadence of ∼53 s. This allowed 348 exposures over the
5.1 h of observation. To minimize slit losses we created a mask
with slits of 30 arcsec length and 10 arcsec width for the three stars,
giving seeing-limited (therefore variable) resolution ranging from
R ∼ 430 to 860 at 700 nm. Calibrations were taken before and after

the science observations, and consisted of flat-fields and arc lamp
exposures. Further arcs were taken with a calibration mask. This
was almost identical to the science mask but with narrow slits of
1 arcsec to enable more precise wavelength calibration.

The data were reduced using the standard GMOS pipeline con-
tained in the Gemini IRAF1/PYRAF2 package. First, the ROI images
were processed to be in the standard GMOS format. Basic reduc-
tions included bias subtraction and wavelength calibration. Fringing
is particularly large at the red end of the spectra3 (>750 nm). We
tried correcting for this using the flat-fields; however, this proved
particularly problematic given that our spectral flat-fields were taken
with slit widths much larger than the point spread function (PSF) of
the star. Flat-fields taken with the calibration mask were corrupted.
Given this, we decided not to apply flat-fielding. In differential spec-
trophotometry, flat-fielding is not necessary provided the sensitivity
ratios between the target and comparison stars in each wavelength
channel remain constant. Of course, this is often not the case if
there is movement of the spectra on the CCDs, seeing variations,
etc. However, correcting all the data using the same flat-field can-
not account for such effects anyway (although it might mitigate
against them), given that spectral flat-fields are PSF (at least when
using wide slits) and wavelength dependent. Simple flat-fielding is
also unable to correct for severe fringing at the level required for
transmission spectroscopy.

Wavelength-calibrated spectra for the three stars were extracted
using the GSEXTRACT routine, with an aperture of 8 pixels (varying
the aperture by a few pixels had little effect) after sky subtraction.
A few pixel columns (the spatial direction) showing significant
temporal variation were masked from the extraction. Examples of
extracted spectra of WASP-29 and the two comparison stars are
shown in Fig. 1, showing uncorrected fringing effects at the red end.
The spectra were divided up into several spectral regions, defining
independent wavelength channels. To extract the light curves for
each wavelength channel, the spectra were summed in each of the
spectral regions to produce a flux time series of the target and
comparison stars for each channel. The target flux was then divided
through by the sum of the comparison stars’ flux to produce multiple
light curves at each wavelength channel, which we hereafter refer
to as the ‘spectral’ light curves. We experimented with different
numbers of wavelength channels, which affect the resolution and
signal-to-noise ratio (S/N), and finally settled on 30 across the whole
spectral range, which are marked by the vertical dashed lines in
Fig. 1. We divided each of the three chips into 10 channels each of
the same pixel widths, ignoring the gaps between detectors in the
images.

Correlated noise is present to some degree in all the light curves,
but is particularly bad at the red end due to the fringing (and possibly
the strong O2 telluric feature at ∼7590 Å). We therefore decided
to analyse only 15 spectral light curves at the blue end and discard
the remaining 15 for the remainder of this analysis. We also ex-
perimented with the two comparison stars. Given that the second
comparison star is significantly fainter, it was excluded from the

1 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy
(AURA) under cooperative agreement with the National Science Founda-
tion.
2 PYRAF is a product of the Space Telescope Science Institute, which is
operated by AURA for NASA.
3 Fringing is not so problematic using the GMOS-North detectors, where
future observations are planned.
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Figure 1. Example spectra extracted from a single exposure. The black line
denotes WASP-29, and the blue and green lines denote the two comparison
stars. The vertical dashed lines mark the extraction regions, with the shaded
regions marking the gaps in the target spectrum between the detectors. Only
the first 15 channels were used in the final analysis, due to significant fringing
at the red end.

Figure 2. The ‘white’ light curve produced from the first 10 wavelength
channels of the GMOS spectra. Top: best-fitting model using a white noise
analysis and the residuals. Clearly, significant systematics are present and
must be accounted for in the fitting process. Bottom: best fit using a GP model
with a Matérn 3/2 covariance kernel (see the text). The red line represents
the best-fitting model, with the grey regions representing the 1σ and 2σ

limits of the instrument model plus white noise times the transit model. The
dashed red line is the projection of the systematics model without the transit,
along with the 1σ and 2σ limits (now excluding the white noise term).

analysis and we only used the brighter one. Finally, we also pro-
duced a ‘white’ light curve, by summing up the flux over the first
10 wavelength channels (the other 5 contained larger systematics),
prior to dividing through the target flux by the single comparison
star’s flux. The white light curve is shown in Fig. 2, and the spectral
light curves are shown in Fig. 3.

We calculated the theoretical photon noise for the white light
curve and each spectral bin, taking into account the read noise and
sky contribution (although negligible high signal-to-noise data).
Typical integrated electron counts per exposure for each spec-
tral bin range from ∼3.7 × 106 to 2.1 × 107 for the target star,
and ∼7.9 × 106 to 2.6 × 107 for the comparison star and vary
slightly throughout the night with airmass. For the white light curve
the typical integrated counts per exposure were ∼1.3 × 108 and
2.0 × 108 electrons for the target and comparison star, respec-
tively. This results in (time-averaged) theoretical precision on the

relative flux per exposure ranging from 2.9 × 10−4 to 6.2 × 10−4

for the spectral light curves, and 1.1 × 10−4 for the white light
curve.

We also extracted auxiliary data from our target and compari-
son star’s spectra to investigate the cause of the systematics present
in the light curves. The relative shift in the dispersion axis was
measured by cross-correlating each star’s spectra with the first in
the time series. The relative shift in the cross-dispersion axis and
the width of the spectral trace were found by fitting a Gaussian
function to each column of the spectrum, and finding the aver-
age values per exposure. Over the course of the observations, the
shift in the dispersion and cross-dispersion axes were ∼1.0 and
0.5 (binned) pixels, respectively, and were the same for both stars
(within the measurement error of ∼0.1 pixels), showing that no
significant rotation of the field occurred. The full width at half-
maximum in the cross-dispersion direction ranges from 6 to 12
(binned) pixels, resulting in the varying spectral resolution. We
found no significant correlations between these measurements and
the systematics in the light curves, although the seeing variations
are likely the most significant contributor given the relatively large
changes.

3 L I G H T- C U RV E A NA LY S I S

The white light curve and the 15 spectral light curves were modelled
in a variety of ways to account for the instrumental systematics. We
first analysed them using a simple white noise model to inspect the
residuals and establish the nature of the systematics. In all cases,
the transit model was constructed using the analytic equations of
Mandel & Agol (2002), and is similar to that described in Gibson
et al. (2008). We assumed a circular orbit and fixed the period
(P) to 3.922 727 d as given in Hellier et al. (2010). The remaining
parameters of the transit model were the central transit time (TC), the
system scale (a/R�), the planet-to-star radius ratio (ρ = Rp/R�), the
impact parameter (b), the two quadratic limb darkening parameters
(c1,c2) and two parameters of a linear baseline model of time (foot,
Tgrad). We hereafter denote the transit model as T (t,φ), where t is
a vector of time, φ the vector of transit parameters and f the vector
of flux measurements.

Unless otherwise stated, all of these parameters except P were
fitted to the white light curve, and ρ, c1, c2, foot and Tgrad were fitted
to the spectral light curves with the remaining parameters fixed to
the final white light-curve values (see Section 4.1). This is because
we are interested in finding the relative values for ρ as a function
of wavelength to produce our transmission spectrum, and we can
condition on the values of TC, a/R� and b, that change the inferred
values for ρ in the same way.

Given the lack of correlations found between the systemat-
ics and the auxiliary information extracted (see Section 2), we
model the systematics as time-correlated noise. The only dif-
ferences in the following analyses are the noise models used
to account for instrumental systematics. These are described in
turn.

3.1 White noise analysis

We first analysed all of the light curves using a simple white noise
model, with likelihood given by

p( f |t, φ) = N (
T (t, φ), σ 2

wI
)
, (1)

where N (μ, �) is the multivariate normal distribution with mean
μ and covariance matrix �, σw is the uncertainty of each data point
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Figure 3. Spectral light curves with the central wavelengths marked, with a linear trend in time removed. Left-hand panel: light curves fitted with the simple
white noise model. Middle panel: residuals from the white noise fits. Right-hand panel: the same light curves as in the left-hand panel with their best-fitting
GP model in red. The grey shading represents the 1σ and 2σ limits of the GP model (including white noise).

and I is the identity matrix. In other words, we have a diagonal
covariance matrix with all diagonal terms equal to σ 2

w, representing
a standard i.i.d. noise model as is commonly used to model transits.

We then multiply the likelihood by the prior on the transit and
noise parameters, p(φ, σ 2

w), to produce the joint posterior probabil-
ity distribution and use a Monte Carlo Markov chain (MCMC) to
explore the posterior distribution and produce marginal probabilities
for each of the model parameters. In practice, we do not explicitly
state priors for most parameters, implying uniform, improper priors.

The exceptions are for the limb darkening parameters and impact
parameter,4 where we restrict the parameter to be positive using a
step function of the form

p(x) =
{

0, if x < 0
1, if x ≥ 0

,

4 Strictly speaking, we should apply the same prior to ρ and a/R�, but this
would have no effect on the inference.
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specifying another improper prior. We also restrict the sum of the
two limb darkening parameters c1 + c2 ≤ 1 in a similar way to ensure
that the brightness of the stellar surface is positive. Four MCMC
were run for each light curve, of length 100 000. We excluded the
first 10 per cent of each chain and verified convergence by checking
the Gelman and Rubin (GR) statistic (Gelman & Rubin 1992). The
light curves along with their best-fitting models are shown in Figs
2 and 3 for the white and spectral light curves, respectively.

Clearly, the white noise model is incapable of accounting for the
correlated noise in the light curves, as seen in the residuals. We
therefore analyse the residuals of each of the best-fitting models in
an effort to understand the form of the systematics. We first use the
time-averaging method to obtain a simple estimate of the red noise
(Pont, Zucker & Queloz 2006), following the procedure of Winn
et al. (2008), where the residuals are averaged into bins of width N,
and the RMS is calculated as a function of N. The noise should drop
by 1/

√
N if it is uncorrelated in time.5 See Gibson et al. (2009)

for a more detailed description of this procedure. Fig. 4 shows an
example of this for one of the light curves, clearly showing that
there is time-correlated noise in the light curves. As a first attempt
to account for correlated noise, we calculate the factor β, which is
the ratio of the RMS versus N plot to the theoretical noise in the
white case. We choose the maximum value for this, and then scale
the noise parameter, σw, by this value, fix it and refit the light curves
using artificially inflated error bars to account for the systematics
using the same MCMC procedure as before. β ranges from ∼2.4
to 3.8. We will hereafter refer to this as the ‘white noise plus β’
model.

This method is a useful way to estimate the additional uncer-
tainties expected in the presence of systematic noise. However, it
does not allow the form of the correlations to be modelled and
therefore cannot produce more accurate parameter estimates (this is
discussed in Carter & Winn 2009), and therefore we consider more
sophisticated models in the following sections.

3.2 GP analysis

We use a GP to model the time-correlated noise, similar to that de-
scribed in Gibson et al. (2012a,b), allowing us to model instrumental
systematics as a stochastic rather than a deterministic process. This
avoids the need to specify a parametric form for the systematics,
which is often impossible to do, whilst also allowing for a much
more flexible model. Furthermore, GPs are intrinsically Bayesian,
thus avoiding the possibility of overfitting systematics. The combi-
nation of a very flexible model and principled Bayesian inference
effectively allows one to marginalize out any ignorance about the
form of the systematics model and account for it whilst inferring
transit parameters. This is extremely challenging to achieve us-
ing parametric models as it requires calculation of the Bayesian
evidence (and therefore proper, usually informative, priors on the
model parameters), and perhaps even marginalization over many
possible instrument models.

Here we briefly describe the GP model, and refer to Gibson
et al. (2012b) and references therein for further details. A GP is a
collection of random variables, any finite subset of which has a joint
Gaussian distribution. Therefore, we can write our GP as

p( f |t, φ, θ ) = N (T (t, φ), �(t, θ )) . (2)

5 Actually, 1√
N

√
M

M+1 , where M is the number of bins.

Figure 4. Residual analysis of one of the spectral light curves (6895 Å).
Top panel: residuals from the best-fitting white noise model. The dashed
lines represent the white noise RMS. Second panel: plot of the RMS as a
function of the bin size N. The dashed line represents the theoretical curve
expected for white noise, and the ratio of the two curves gives the factor β,
used to rescale the uncertainties for the simple rescaling systematics model.
Third panel: autocorrelation function of the residuals. The solid green line
marks the best-fitting Matérn 3/2 kernel from the GP model, and the dashed
red line the zero correlation. Bottom panel: power spectral density of the
residuals. The dashed line marks a 1/f envelope.

The only difference to equation (1) is that we now consider the off-
diagonal elements of the covariance matrix. As well as specifying a
mean function, in this case the transit function, with a GP model, we
must also specify a kernel function which populates the elements of
the covariance matrix and has hyperparameters6 θ , written as

�nm = k(tn, tm|θ ).

We will discuss the choice of the kernel function later.
The above GP uses the kernel to model the residuals from the

light-curve model. Alternatively, we can model the light curve as
the transit light curve times a GP, if we wish our systematics model
to be multiplicative rather than additive, i.e.

f = T (t,φ, θ ) × GP(1, �(t, θ )).

6 A Gaussian process, GP(μ, �), is fully specified by its mean μ and co-
variance �. Parameters of both the mean function and kernel are known as
hyperparameters.
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In this case, the joint probability distribution can be written for
f /T (t,φ) as

p( f /T (t, φ, θ )|t, φ) = N (1, �(t, θ )) .

In practice, it makes little difference which model we choose, given
that transit light curves are shallow, and we could also combine
multiplicative and additive GPs. For the remainder of this paper, we
use the latter, multiplicative model.

We tested several different types of kernels to model the time-
correlated noise, including the squared exponential (SE), Matérn
(MAT) and rational quadratic (RQ) [see Rasmussen & Williams
(2006) for a detailed discussion of kernels, which is beyond the
scope of this paper]. In a fully Bayesian analysis, we could calcu-
late the Bayesian evidence for each kernel and use it to choose the
best kernel, or alternatively even marginalize over them. However,
not only is this computationally prohibitive, but it would also require
us to specify proper (therefore informative) priors on the hyperpa-
rameters, which would make the evidence somewhat subjective.
We therefore selected a kernel based on analysis of the white noise
model residuals, and by running tests on simulated light curves.

In the end we decided to use a MAT kernel function, given by

k(tn, tm|θ) = ξ 2
(

1 +
√

3η	t
)

exp
(
−

√
3η	t

)
+ δnmσ 2

w, (3)

where ξ is a hyperparameter that specifies the maximum covariance,
	t = |tn − tm| is the time difference, η is the inverse characteristic
length scale and δ is the Kronecker delta. This kernel can be seen
as a rougher version of the commonly used SE kernel (i.e. that used
in Gibson et al. 2012a,b). One major motivation for this kernel is
that it gives the best match to the autocorrelation function (ACF) for
most of the residuals from the white noise model. This provides an
estimate of how the data points are correlated with one another as a
function of time lag, and an example is shown in Fig. 4. The green
line in the ACF function marks the best-fitting covariance kernel
(although in practice we marginalize over the kernel parameters).
We also ran a series of tests on simulated light curves, described
in Appendix A, which further validate the use of the MAT kernel.
We stress that selecting a kernel, whilst in some ways analogous to
selecting a parametric model, allows a much more flexible model
than any parametric form and is also intrinsically Bayesian. In
addition, we ran much of the same analysis using the SE kernel.
This gave similar results, and we therefore conclude that the choice
of kernel is not critical for this particular data set.

Analogously to the white noise case, we can specify priors for
all the hyperparameters of the model and multiply by the marginal
likelihood7 to produce the posterior joint probability distribution.
This can then be optimized with respect to the hyperparameters us-
ing a Nelder–Mead simplex algorithm, or alternatively the marginal
parameter distributions for each hyperparameter can be obtained by
exploring the posterior distribution with an MCMC in just the same
way as for the white noise model. The same priors were applied
to the limb darkening parameters and b, and we also specified hy-
perpriors for the hyperparameters ξ and η. These took the form of
gamma distributions with shape parameter unity, given by

p(x) =
{

0, if x < 0
1
l

exp (−x/l) , if x ≥ 0
,

where l is the length scale of the hyperprior. We set the length
scales for ξ and η as 10−3 and 200, respectively. These were not

7 called the marginal likelihood because in a GP we have marginalized over
all the possible functions for each set of hyperparameters.

specified to influence the results of the inference, but rather to ease
the convergence of the MCMC (when both parameters are small
they are unconstrained by the likelihood). Indeed, we checked that
the length scales of the hyperpriors did not affect the inferred transit
parameters.

Whilst GPs are rather simple in theory, each evaluation of the
marginal likelihood requires inversion of the covariance matrix,
which makes a full marginalization tedious as it requires O(n3)
computations, and limits full GP analyses to relatively small data
sets. Therefore in addition to the full GP marginalization, we also
use a technique called maximum likelihood type II (ML-II), where
the hyperparameters of the covariance kernel are fixed to their max-
imum posterior values, and we marginalize over the remaining tran-
sit parameters. Once the covariance hyperparameters are fixed, the
need to invert the covariance matrix is negated. This is a valid ap-
proximation when the posterior is sharply peaked with respect to
the covariance hyperparameters, and is particularly useful when
running many tests on the data, although for our final results we
always use fully marginalized GPs (i.e. we marginalized over the
covariance hyperparameters as well).

We ran four chains for all light curves of length 100 000 and
50 000 for the ML-II and full marginalizations, respectively. Each
chain of length 50 000 for the full marginalization took about
17.5 min to compute using a single core on a standard desktop,
compared to about 2 min and 1 min for 100 000 length chains with
the ML-II method and white noise model, respectively. The run
times do not scale as badly as one might expect with O(n3) com-
plexity, because the computation of the light-curve model rather
than the likelihood dominates for the simpler noise models. We
tested for convergence in the same way as before. Due to degen-
eracy in the linear baseline and the GP model, we decided to fix
the Tgrad parameter for the full GP marginalization. This requires
shorter chains to reach convergence and does not affect the results
as ρ did not significantly correlate with Tgrad. We verified this with
longer chains for a subset of the light curves. In a few cases, ξ

and/or η did not fully converge (the GR statistic was a few per cent
from unity), but only when one or both parameters were consistent
with zero; however, in all cases ρ converged and therefore the trans-
mission spectrum is not affected. The best-fitting GP models to the
light curves are shown in Figs 2 and 3. To illustrate correlations in
the parameters and convergence of the final marginal distributions,
1D and 2D marginal distributions are shown in Fig. 5 for the white
light curve and one spectral light curve.

3.3 Wavelet analysis

As we have used a GP to fit for time-correlated noise only, it is
worth exploring other methods in the literature to account for time-
correlated noise. One such method is the wavelet method introduced
by Carter & Winn (2009). It is valid when the power spectral density
(PSD) of the noise takes the form

PSD ∝ 1

f γ
,

where f is the frequency and γ is the spectral index. The method
is based on taking a wavelet transform of the residuals from the
best-fitting model, and the likelihood is computed from the wavelet
coefficients. The central idea of this method is that it diagonalizes
the covariance matrix of equation (2) when specified in the wavelet
domain. Like GPs it models the systematics as a stochastic process;
however, it has the significant advantage that a burdensome matrix
inversion is not required for each evaluation of the likelihood and is
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Figure 5. 1D and 2D marginal distributions from the posterior probability distribution for the GP noise model. The lower-left shows the probability distributions
for the white light curve, and the upper-right for one of the spectral light curves. The black lines in the 2D distributions mark the 1σ and 2σ limits, respectively.
Distributions for the four separate MCMC are shown in the 1D histograms.

therefore much faster. The extra computation required as compared
to the white noise analysis is a fast wavelet transform, which is of
the order of O(n), and therefore does not significantly extend the
computation time.

In order to justify the wavelet method we analysed the PSD of all
the residuals from the white noise fit as recommended by Carter &
Winn (2009). An example of this is shown in Fig. 4. In most cases
the noise appeared consistent with 1/fγ , by which we mean that
low-frequency components dominate, but the shape itself is hard to
determine (the PSD should appear as noise within a 1/fγ envelope).
This supports the use of the wavelet-based likelihood for our light
curves or at least suggests that the noise properties are nearly 1/fγ .

Our likelihood therefore took the form of equation 32 from Carter
& Winn (2009), and we multiplied by priors similarly to Section 3.1
to produce a posterior distribution. In addition to the white noise
parameter σw, the wavelet likelihood has a red noise parameter
σr specifying the amplitude of the red noise component, and the

spectral index γ . We fixed γ to 1 (as in Carter & Winn 2009), and
optimized and explored the joint posterior distribution with respect
to the free transit parameters, plus σw and σr. Chain lengths and run
times were approximately the same as for the white noise analysis.

3.4 Removal of common mode systematics

Finally, we experimented with a simple method to remove com-
mon signals observed in the spectral light curves to see if we could
increase the precision in our transmission spectrum. We were moti-
vated to do this as we obtain a reduced χ2 significantly lower than
1 for our transmission spectrum using all of the noise models (see
Section 4.3). This is extremely unlikely to happen by chance and
is probably the result of similar systematic signals in the spectral
light curves. Noise models will take all signals into account when
calculating the uncertainties in ρ (as they should); however, com-
mon signals will increase the uncertainties for each point in the
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transmission spectrum. As we are trying to find the relative change
in ρ with transmission spectroscopy (hence why we condition on
fixed values of TC, a/R� and b), we tried to remove a common signal
in all the light curves.

This common signal is evident in Fig. 3, where many of the
residuals appear to have the same shape. This signal is also very
similar to the GP model fitted to the white light curve (red dashed
line in Fig. 2). Taking this signal into account with the GP (or
any other method) will increase the uncertainties in the calculated
values of ρ, but this signal should not affect the relative values
for ρ. We therefore divided through each spectral light curve by
the GP systematics model fitted to the white light curve prior to
fitting each light curve with the methods described above. This
will remove the common signal and allow the noise models to
produce more independent data points. Of course, the underlying
physical signal may not be identical for all the light curves, but the
noise models described above can also take into account any excess
signal added or not removed by the procedure in the same way that
they account for ‘normal’ systematics. In theory, we could model
this in more principled ways, e.g. by modelling all light curves
simultaneously with a common signal plus independent signals or
perhaps by using the white light-curve instrument model as an input
for the systematics model, but we choose not to pursue them here and
follow this simple procedure. Each fit for the spectral light curves as
described in Sections 3.1, 3.2 and 3.3 was repeated by first dividing
the light curve by the GP noise model for the white light curve.
This procedure appeared to remove much of the common signal
and allowed for a more precise determination of the transmission
spectrum, as described in the following section.

4 R E S U LT S A N D C O N C L U S I O N S

4.1 White light-curve analysis

The results from the white light-curve fit are given in Table 1 for
three of the noise models used: white noise plus β rescale, wavelets,
and the GP after marginalizing over all the transit parameters and
covariance hyperparameters. The derived parameters are consistent
with those reported in Hellier et al. (2010) and Dragomir et al.
(2011). In general, the three noise models gave consistent results.

The simple white noise model produced the smallest uncertainties
(which we do not reproduce here), whereas the white noise plus β

model gave the largest uncertainties. The wavelet and GP models
both gave something in between. This is expected given that they
both try to account for the form of the systematics model when
inferring transit parameters, rather than just scaling the uncertainties
to account for it. The fact that the wavelet and GP methods are not
only consistent but also produce similar uncertainties is a strong
validation of both techniques. We briefly discuss the relative merits
of both methods in Section 5, and for the remainder of this paper
we adopt the GP results, given that we cannot verify the 1/f nature
of the noise, and they provide more conservative uncertainties. This
may indicate that we are taking into account a larger range of
possible systematic signals. The white noise values fitted for the
GP and wavelet methods are ∼3.8 and 2.9 times the theoretical
photon noise. The difference is perhaps due to the wavelet method
absorbing some of the white noise into the systematic component
[see e.g. figs 1 and 4 of Carter & Winn (2009), where the 1/f noise
appears to contain a white component]. Further sources of noise are
accounted for by the time-correlated component of these models,
given by the max covariance and red noise parameters quoted in
Table 1.

Using the distributions from the MCMC, we calculate further sys-
tem parameters of WASP-29b. These are given in Table 2. Where
the distributions were not available, we generated normal distributed
values from the values given in the literature to propagate the uncer-
tainties in the calculations properly. Again these results are consis-
tent with the values reported in Hellier et al. (2010) and Dragomir
et al. (2011) within the uncertainties, further confirming WASP-
29b’s status as a Saturn-like exoplanet.

4.2 Transit ephemeris

A new ephemeris was calculated for WASP-29 using the transit time
derived for the white Gemini transit light curve, plus the ephemeris
reported in Hellier et al. (2010) and the transit time from Dragomir
et al. (2011). These were converted to HJDUTC format, and a straight
line of the form

TC(E) = TC(0) + PE

Table 1. Parameters from the MCMC fits of the white light curves, given for three different noise models: white noise plus
β, wavelets and the fully marginalized MAT GP.

Noise model
Parameter White noise +β Wavelet GP

Central transit time, TC (HJDUTC) 245 5853.725 15+0.000 28
−0.000 28 245 5853.724 69+0.000 15

−0.000 15 245 5853.724 42+0.000 16
−0.000 17

Period, P (d) 3.922 727 (fixed) 3.922 727 (fixed) 3.922 727 (fixed)

System scale, a/R� 11.95+0.34
−0.67 12.36+0.12

−0.21 12.36+0.13
−0.22

Planet-to-star radius ratio, Rp/R� 0.0998+0.0026
−0.0017 0.0984+0.0010

−0.0009 0.0982+0.0015
−0.0015

Impact parameter, b 0.25+0.16
−0.16 0.14+0.10

−0.08 0.14+0.11
−0.09

Linear limb darkening parameter, c1 0.721+0.076
−0.091 0.745+0.039

−0.047 0.698+0.059
−0.089

Quadratic limb darkening parameter, c2 0.154+0.135
−0.094 0.090+0.095

−0.051 0.142+0.142
−0.084

Out-of-transit flux, foot 0.999 69+0.000 09
−0.000 09 0.999 63+0.000 08

−0.000 08 0.999 65+0.000 31
−0.000 33

Time gradient, Tgrad −0.000 14+0.000 05
−0.000 05 −0.000 08+0.000 04

−0.000 03 −0.000 08 (fixed)

GP max covariance, ξ – – 0.000 58+0.000 33
−0.000 18

GP inverse length scale, η – – 25.7+14.9
−9.5

White noise, σw 0.001 19 (fixed) 0.000 324+0.000 015
−0.000 014 0.000 426+0.000 017

−0.000 016

Red noise, σr – 0.002 51+0.000 33
−0.000 30 –
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Table 2. WASP-29 parameters derived from the MCMC posterior
distribution of the GP fits.

Parameter Value Unit

Transit epoch, T0 245 5830.188 11+0.000 16
−0.000 16 HJDUTC

Period, P 3.922 7186+0.000 0068
−0.000 0068 d

Transit duration, T14 0.110 36+0.000 71
−0.000 63 d

Inclination, i 89.17+0.50
−0.56 deg

Semimajor axis, a 0.045 65+0.000 60
−0.000 62 au

Stellar radiusα , R� 0.808 ± 0.044 R�
Planet massα , Mp 0.244 ± 0.020 MJ

Planet radius, Rp 0.776+0.043
−0.043 RJ

Planet density, ρp 0.53+0.11
−0.09 ρJ

Surface gravity, log gp 3.00+0.06
−0.06 [cgs]

Equilibrium temperature, Tp 970+32
−31 K

α Adopted from Hellier et al. (2010).

was fitted to the three transit times. The zero-point epoch was set
equal to as near to the centre of mass of the three points as possible,
weighted as 1/σ 2

TC
. This was to minimize the covariance between

the transit epoch and the period, which was verified after the fit. The
chosen E = 0 transit was six periods prior to the Gemini transit,
giving epochs of −130, −98 and 6 for the three transits. The new
ephemeris is reported in Table 2.

4.3 Transmission spectrum

The transmission spectra produced via the noise models discussed
in Section 3 are shown in Fig. 6. These are prior to removal of the
common mode systematic. The horizontal dashed lines represent
the weighted average and plus and minus three scale heights, cal-
culated to be ∼360 km (one scale height of 360 km corresponds
to ∼1.3 × 10−4 in transit depth). In general, the transmission spec-
tra are all in broad agreement and are remarkably flat, showing a
featureless spectrum at the few parts in 10−4 level. Uncertainties
were smallest for the simple white noise model (not shown) and
largest for the full GP marginalization. However, the dispersion of
the points (i.e. the scatter around the average) was smallest for the
full GP marginalization. This implies that the GP model is doing a
particularly good job at determining the correct value for ρ, but for
some reason overestimates the uncertainty (it is highly unlikely that
a draw from random noise would lead to such a small dispersion). In
fact, all of the noise models presented give reduced χ2 significantly
smaller than 1. We propose that this is due to a common mode
systematic that the noise models take into account in a similar way
for each wavelength channel, and lead to the correction for this as
discussed in Section 3.4.

Fig. 7 shows the transmission spectra produced after the com-
mon mode systematic correction. The spectra produced by all noise
models were again consistent, with the full GP model giving un-
certainties typically 30–40 per cent larger than the other models.
We therefore choose to adopt these as our final uncertainties, for
the reasons discussed in Section 4.1. These results are given in
Table 3. The transmission spectrum is still consistent with a flat
model, but we are able to place stronger constraints on the atmo-
sphere of WASP-29b using the common mode correction. For the
common-mode-corrected light curves, the white noise values fitted
for the GP model range from 1.51 to 2.12 times the theoretical
noise, and from 1.11 to 1.50 for the wavelet model. Similarly to the
white light curve, further sources of noise are accounted for by the

Figure 6. Transmission spectra of WASP-29b produced by the various noise
models prior to removal of the common mode systematic. The horizontal
dashed lines represent the weighted average and plus and minus three scale
heights, calculated to be ∼360 km (one scale height of 360 km corresponds
to ∼1.3 × 10−4 in transit depth). In all cases, the χ2 of a flat model is
considerably lower than 1, indicating that the uncertainty in the relative
planet-to-star radius ratio might be overestimated due to common mode
systematics.

systematic component of these models. The lower ratios between
the actual and theoretical white noise for the spectral light curves as
compared to the white light curve perhaps indicate that atmospheric
transmission corrections using the comparison star are best done in
narrow wavelength ranges.

Fig. 8 shows the transmission spectrum produced with the full
GP model, now with several model transmission spectra of WASP-
29b overplotted. These forward models were produced using the
NEMESIS retrieval tool (Irwin et al. 2008), a radiative transfer code
originally developed to investigate the atmospheres of Solar system
planets, and recently adapted for exoplanet transmission spectra
(Lee, Fletcher & Irwin 2012, Barstow et al., submitted). The grey
line shows a model containing a purely H2 and He atmosphere.
The green, red and blue lines are with 100 ppmv H2O and 1, 5
and 10 ppmv of Na and K added, respectively. Gas absorption line
data are from Rothman et al. (2010) and Kupka et al. (2000) for
the H2O and the alkali metals, respectively. Given the precision of
the transmission spectrum, we do not attempt a detailed retrieval
here, rather the models are plotted for reference to show the scale
of potential features.

Using our data we can only realistically rule out cloud-free at-
mospheres with significant amounts of Na, given the lack of a
pressure broadened feature. However, a Na-rich atmosphere with
thick clouds or Rayleigh scattering haze is not ruled out. Of course,
another explanation is that elemental Na is simply not present. This

Downloaded from https://academic.oup.com/mnras/article-abstract/428/4/3680/1007354
by guest
on 09 February 2018



Transmission spectroscopy of WASP-29b 3689

Figure 7. Same as Fig. 6 with the common mode systematic removed from
all light curves prior to fitting.

Table 3. Transmission spectrum
of WASP-29b using the full GP
marginalization and after removal of
the common mode systematic.

Wavelength (Å) ρ 	ρ

5211.1 0.0961 0.0027
5348.0 0.0979 0.0016
5485.0 0.0971 0.0018
5621.9 0.0970 0.0016
5758.8 0.0973 0.0013
5895.8 0.0974 0.0013
6032.7 0.0976 0.0013
6169.6 0.0981 0.0013
6306.6 0.0970 0.0014
6444.9 0.0969 0.0014
6616.0 0.0973 0.0016
6755.7 0.0975 0.0032
6895.4 0.0969 0.0019
7035.0 0.0970 0.0032
7174.7 0.0970 0.0018

is likely for atmospheres of ∼1000 K or cooler (e.g. Burrows, Mar-
ley & Sharp 2000), where atomic Na can be lost in compounds
such as disodium monosulphide (Na2S) or ansite (NaAlSi3O8), de-
pending on the presence of other species in the atmosphere. Similar
observations at shorter wavelengths could distinguish between a flat
featureless spectrum and one dominated by a Rayleigh scattering
haze, such as the prototypical HD 189733b (Pont et al. 2008; Sing
et al. 2012), and higher resolution (at similar S/N) is required to rule
out the presence of a Na core if there are clouds or haze present.

For comparison, the HD 189733b transmission spectrum varies by
about 2 scale heights over this spectral range due to a Rayleigh
scattering haze. Despite the lack of constraints we can place on
the atmosphere, we can rule out WASP-29b having a similar atmo-
sphere to the other prototypical hot Jupiter HD 209458b, given the
lack of a strong pressure broadened Na feature. As stated, Na is
likely to form compounds below ∼1000 K. Given its prominence in
HD 209458b’s transmission spectrum, this could indicate another
significant transition in classes of hot Jupiter atmospheres.

5 D I SCUSSI ON

We have presented Gemini GMOS observations of the transmission
spectrum of WASP-29b, using the technique of differential spec-
trophotometry. Using a single comparison star, we reached precision
on the transit depth of ∼1 × 10−4 showing that GMOS can pro-
vide precision spectrophotometry at the level needed to probe the
atmospheres of extrasolar planets.

Using the ‘white’ light curve, we refined the system parame-
ters and ephemeris for WASP-29, finding them to be consistent
with previous studies (Hellier et al. 2010; Dragomir et al. 2011).
Despite picking WASP-29 as a test case for GMOS transmission
spectroscopy, the precision attained allows us to rule out a Na-rich,
cloud/haze-free atmosphere, given the lack of a pressure broadened
Na feature. This indicates that Na is not present in the atmospheres
of cooler ‘hot’ Jupiters, or that clouds and/or hazes play an impor-
tant role and mask the pressure broadened alkali metal signatures in
WASP-29b’s upper atmosphere. The former explanation is perhaps
more likely, although a spectrum covering a larger wavelength re-
gion is required to confirm this, and it is of course possible that both
are true. A higher resolution spectrum (at similar S/N) is required
to rule out the presence of a narrow Na core if clouds or hazes dom-
inate. We note that this represents the first transmission spectrum of
a hot Saturn planet.

We have also presented a detailed analysis and comparison us-
ing various types of noise models to account for the GMOS sys-
tematics. Rather than searching for correlations with observational
parameters such as seeing, airmass, etc., we decided to focus on
blind methods to account for the systematics, i.e. with no addi-
tional input parameters used to model the systematics. The meth-
ods tried include a white noise model, a simple rescaling of the
photometric uncertainties, the wavelet method of Carter & Winn
(2009) and the GP model of Gibson et al. (2012b) applied to time-
correlated noise. The more sophisticated methods gave similar un-
certainties, verifying their usefulness for analysis of time-correlated
systematics.

In general, we restate some of the conclusions of Carter & Winn
(2009) that any model taking into account time-correlated noise is
better than the one ignoring it, and that an analysis of the residuals
using ACFs and PSDs is especially useful in guiding the choice of
the noise model required. The wavelet and GP models give simi-
lar results and uncertainties for the white light curve, and within
about 40 per cent for the uncertainties in the transmission spec-
trum. Despite GPs giving a slightly more conservative estimate of
the uncertainties for the GMOS data, the wavelet method is per-
haps preferred in general for the analysis of time-correlated noise
when the PSDs of the residuals follow a 1/fγ distribution, given
its much faster execution time (although we note that this is hard
to verify for individual data sets, and care must be taken for low-
significance results). The GP method is more general, and can be
applied to almost any noise model given a suitable choice of ker-
nel (potentially even non-stationary noise), non-regularly spaced
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Figure 8. Transmission spectrum of WASP-29b using the full MAT GP noise model, and after removal of the common mode systematic. The horizontal
dashed lines represent the weighted average and plus and minus three scale heights, calculated to be ∼360 km (one scale height of 360 km corresponds to ∼1 ×
10−4 in transit depth). The grey line shows a model containing a purely H2 and He atmosphere. The green, red and blue lines are with 100 ppmv H2O and 1, 5
and 10 ppmv of Na and K added, respectively. These are not fitted to the data, but simply overplotted for reference. The models are plotted with a resolution
of 50 Å; the points do not significantly change when plotted at the resolution of the spectrum.

data, and can incorporate arbitrary numbers of input vectors into
the stochastic function. This allows physical systematics models
to be folded into the stochastic part of the GP, therefore allowing
principled Bayesian inference of the instrument model and negat-
ing the need to specify the instrument model in closed form (Gib-
son et al. 2012a,b). However, this added functionality comes at
a significant runtime cost and restricts the use of GPs up to data
sets of ∼1000 points (at least using full marginalization over the
hyperparmeters with MCMC methods). Investigations into sparse
GP models may allow their application to larger data sets (e.g.
Quiñonero-Candela & Rasmussen 2005). We finally note that given
the difficulty in dealing with systematic noise, the use of multiple,
complimentary techniques is desirable where possible, although
perhaps the only truly robust way to confirm results is to repeat
measurements.
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APPEN D IX A : G P TRIALS O N SIMULATED
L I G H T C U RV E S

In order to choose the best GP kernel for time-correlated noise,
we ran a series of tests on simulated light curves, with injected
‘systematic’ noise. This section briefly describes our results.

In total we simulated 2400 light curves with 250 data points. For
each light curve we set the transit parameters as follows: P = 4.0 d,
a/R� = 12.0, ρ = 0.1, b = 0.25, c1 = 0.2 and c2 = 0.2. A white
and a red noise term were then picked from a uniform distribution
between 0.0001 and 0.0006. The injected systematic signal was
simulated in a variety of ways. First, we created ‘function noise’,
where we summed 100 exponential, Gaussian and sinusoidal func-
tions with random parameters (within sensible limits), and rescaled
so that the mean and standard deviation were equal to unity and
the red noise term, respectively. Secondly, we created 1/f noise in
a similar way to Carter & Winn (2009). We created a signal in the
Fourier domain corresponding to a PSD of 1/f, by setting a random

amplitude within a 1/f0.5 envelope (the PSD is the square of the
Fourier transform magnitude), with a corresponding random phase.
The inverse Fourier transform then produced the systematic signal.
The signal was then scaled to have mean and standard deviation in
the same way as before. Finally, we created some signals using a
combination of these methods, by simply adding the two signals
each with individual red noise terms chosen (and rescaling to a
mean of 1). The model light curve was multiplied by the systematic
signal, and the white noise was finally added. Out of the 2400 light
curves, 800 were created using ‘function noise’, 800 with 1/f noise
and 800 with the combined noise model. The light curves were
inspected to ensure that they appeared realistic.

Each light curve was fitted using a white noise model, as described
in Section 3.1, and the GP model, described in Section 3.2, this time
using a range of kernels, including the SE, RQ and MAT. The MAT
kernel is already defined in equation (3). The SE kernel is

k(tn, tm|θ ) = ξ 2 exp
(−η	t2

) + δnmσ 2
w.

This kernel has the same parameters as the MAT kernel, only
the shape changes. The MAT kernel is more sharply peaked at
	t = 0, resulting in a rougher function, whereas the SE is an

Figure A1. Histograms of the ‘number-of-sigma’ statistic for each of the noise models used. The plots are colour coded and show the distributions for the
central transit time, system scale and the planet-to-star radius ratio. The standard deviation of each is given, along with the average (see the text). The dashed
line shows a Gaussian with a mean of 0 and a standard deviation of 1, i.e. what an ideal noise model would produce.
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infinitely differentiable, smooth function of the input. The RQ
kernel is

k(tn, tm|θ) = ξ 2

(
1 + 	t2

2αl2

)−α

+ δnmσ 2
w,

where α is a shape parameter and l is a length scale parameter. This
kernel is a smooth function and is a scale mixture of SE kernels with
different characteristic length scales. The limit as α → ∞ is the SE
kernel. For a detailed discussion of GP kernels, see Rasmussen &
Williams (2006).

We ran a single MCMC of length 5000 for each fit and discarded
the first 1000 points. We checked for convergence visually for a
subset of the light curves. We fitted for TC, ρ, a/R� and foot, and
the kernel hyperparameters. b, c1, c2 and Tgrad were held fixed. This
was a compromise to maintain degeneracies in the fit, but also to
allow for shorter MCMC and therefore substantial numbers of trial
light curves. We followed the approach of Carter & Winn (2009) to
analyse the results. We calculated the ‘number-of-sigma’ statistic
for each parameter,

N = (p̂ − p)/σp,

where p̂ is the parameter estimate from the MCMC, σ p is the
uncertainty and p is the true parameter value. This statistic should
be distributed with a mean and a variance of 0 and 1, respectively,

if the parameter uncertainties from the model fits are Gaussian with
the derived uncertainty. The results are plotted in Fig. A1 for the
white noise model and the three GP models. The standard deviation
for the fitted parameters is given in each plot, along with their
average distance from 1.0 (calculated as the standard deviation with
a fixed mean of 1.0).

These results show that the MAT kernel outperforms the others
for analysis of time-correlated noise; therefore, we selected it for
the GMOS analysis. However, we note that this is only valid for
the specific noise models we tried and varies significantly with
varying noise parameters. We also note that these results are likely
to depend in a complex way on the parameters of the light curve and
the number of data points, as well as the injected noise properties.
These tests were designed as a simple way of choosing the best
kernel for time-correlated noise like we see in the GMOS light
curves, and are not intended to be complete. Indeed, the right kernel
to use is probably best selected on a case-by-case basis. Perhaps
most importantly, we note that all three kernels invariably gave
results significantly better than the simple white noise model. This
demonstrates that any reasonably chosen kernel performs better
than a simple white noise analysis when time-correlated noise is
present.
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