5,689 research outputs found

    Area metropolitana e citta' diffusa: potenzialita' e limiti di un modello urbano

    Get PDF
    Recenti proposte parlamentari porpongono di mettere fine ad una discussione sulla città e/o area metropolitana di Roma, confermandone: • una dimensione d’area vasta coincidente con quella della provincia; • la sussidiarietà e la sostenibilità come principi ispiratori ed ordinatori dell’azione di governo del territorio; • le funzioni unitarie e complementari di livello territoriale (programmazione degli interventi per Roma Capitale, le opere di interesse statale, il patrimonio pubblico e privato nazionale ed internazionale, la valorizzazione e la gestione del sistema culturale, ambientale e del turismo, la ricerca e la formazione universitaria, le attività fieristico-congressuali-espositive, l’industria innovativa legata all’ICS); collocando la questione della scelta metropolitana per Roma ad un livello europeo, eppure intermedio tra la scala politica propria della città-capitale e i compiti di programmazione e gestione che il nostro ordinamento costituzionale attribuisce alle province (per l’Europa, le NUT 3). Rispetto a questo obiettivo, Roma non appare in posizione soddisfacente nella mappatura europea delle aree/città capitali metropolitane. Anche se, la spinta al policentrismo impressa dall’Unione potrebbe trovare già una base di corrispondenze nell’organizzazione – soprattutto spontanea - del territorio e dell’economia romana (non solo della Città). Se per un verso, dunque, c’è da augurarsi che attraverso un più stretto recepimento delle indicazioni europee (Cfr. strutture già cooperative su base policentrica), l’area vasta romana, cioè la provincia, diventi nel prossimo periodo 2007-2013 molto più visibile; la mancanza di strumenti appropriati al raggiungimento di questo obiettivo rappresenta un freno alla piena realizzazione di una metropoli diversa dalla semplice somma di progetti ed impostazioni negoziati “dall’alto”, di portata nazionale e regionale, che escludono, ad una lettura “fisica e formale” del territorio, la domanda di integrazione “dal basso”, cioè il riconoscimento, anche economico, delle forme insediative coese riconoscibili romane. In tal senso Roma e la sua provincia rappresentano il livello ideale per una lettura della programmazione territoriale europea, ma anche il livello sussidiario della mediazione tra una visione metropoitana globale e una locale, somma di insediamenti continui, diffusi o nucleari isolati (perirubanizzazione mista ad insediamento puntuale), attualmente privi di orientamento alla governance; lontani cioè da quell’insieme di regole con cui si attua la programmazione spaziale e fisica richiesta dall’Unione, entro cui ogni NUT offre il proprio contributo alla creazione di uno spazio integrato, anche attraverso scelte sussidiarie di metropolitanizzazione (cfr. Territorial Agenda 2007)

    Negative thermal expansion of MgB2_{2} in the superconducting state and anomalous behavior of the bulk Gr\"uneisen function

    Full text link
    The thermal expansion coefficient α\alpha of MgB2_2 is revealed to change from positive to negative on cooling through the superconducting transition temperature TcT_c. The Gr\"uneisen function also becomes negative at TcT_c followed by a dramatic increase to large positive values at low temperature. The results suggest anomalous coupling between superconducting electrons and low-energy phonons.Comment: 5 figures. submitted to Phys. Rev. Let

    Assessment of metals bound to marine plankton proteins and to dissolved proteins in seawater

    Get PDF
    Studies based on laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP-MS) have been performed to assess metal bound to dissolved proteins and proteins from marine plankton after two-dimensional polyacrylamide gel electrophoresis (2D PAGE). Dissolved proteins were pre-concentrated from surface seawater (60 L) by tangential ultrafiltration with 10 kDa molecular weight cut-off (MWCO) membranes and further centrifugal ultrafiltration (10 kDa) before proteins isolation by methanol/chloroform/water precipitation. Proteins isolation from plankton was assessed after different trichloroacetic acid (TCA)/acetone and methanol washing stages, and further proteins extraction with a phenol solution. LA–ICP-MS analysis of the electrophoretic profiles obtained for dissolved proteins shows the presence of Cd, Cr, Cu, and Zn in five spots analyzed. These proteins exhibit quite similar molecular weights (within the 10–14 kDa range) and pIs (from 5.8 to 7.3). Cd, Cr, Cu, and Zn have also been found to be associated to proteins isolated from plankton samples. In this case, Cd has been found to be bound to proteins of quite different molecular weight (9, 13 and 22 kDa) and pIs (4.5, 5.2, 5.5, and 10). However, trace elements such as Cr, Cu and Zn appear to be mainly bound to plankton proteins of low molecular weight and variable pI

    Microscopic self-consistent theory of Josephson junctions including dynamical electron correlations

    Full text link
    We formulate a fully self-consistent, microscopic model to study the retardation and correlation effects of the barrier within a Josephson junction. The junction is described by a series of planes, with electronic correlation included through a local self energy for each plane. We calculate current-phase relationships for various junctions, which include non-magnetic impurities in the barrier region, or an interfacial scattering potential. Our results indicate that the linear response of the supercurrent to phase across the barrier region is a good, but not exact indicator of the critical current. Our calculations of the local density of states show the current-carrying Andreev bound states and their energy evolution with the phase difference across the junction. We calculate the figure of merit for a Josephson junction, which is the product of the critical current, Ic, and the normal state resistance, R(N), for junctions with different barrier materials. The normal state resistance is calculated using the Kubo formula, for a system with zero current flow and no superconducting order. Semiclassical calculations would predict that these two quantities are determined by the transmission probabilities of electrons in such a way that the product is constant for a given superconductor at fixed temperature. Our self-consistent solutions for different types of barrier indicate that this is not the case. We suggest some forms of barrier which could increase the Ic.R(N) product, and hence improve the frequency response of a Josephson device.Comment: 46 pages, 21 figure

    Ecological Modeling of Aedes aegypti (L.) Pupal Production in Rural Kamphaeng Phet, Thailand

    Get PDF
    Background - Aedes aegypti (L.) is the primary vector of dengue, the most important arboviral infection globally. Until an effective vaccine is licensed and rigorously administered, Ae. aegypti control remains the principal tool in preventing and curtailing dengue transmission. Accurate predictions of vector populations are required to assess control methods and develop effective population reduction strategies. Ae. aegypti develops primarily in artificial water holding containers. Release recapture studies indicate that most adult Ae. aegypti do not disperse over long distances. We expect, therefore, that containers in an area of high development site density are more likely to be oviposition sites and to be more frequently used as oviposition sites than containers that are relatively isolated from other development sites. After accounting for individual container characteristics, containers more frequently used as oviposition sites are likely to produce adult mosquitoes consistently and at a higher rate. To this point, most studies of Ae. aegypti populations ignore the spatial density of larval development sites. Methodology - Pupal surveys were carried out from 2004 to 2007 in rural Kamphaeng Phet, Thailand. In total, 84,840 samples of water holding containers were used to estimate model parameters. Regression modeling was used to assess the effect of larval development site density, access to piped water, and seasonal variation on container productivity. A varying-coefficients model was employed to account for the large differences in productivity between container types. A two-part modeling structure, called a hurdle model, accounts for the large number of zeroes and overdispersion present in pupal population counts. Findings - The number of suitable larval development sites and their density in the environment were the primary determinants of the distribution and abundance of Ae. aegypti pupae. The productivity of most container types increased significantly as habitat density increased. An ecological approach, accounting for development site density, is appropriate for predicting Ae. aegypti population levels and developing efficient vector control program

    History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic--a synthesis

    Get PDF
    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43deg.S, Subantarctic Front (SAF) c. 50deg.S, and Antarctic Polar Front (AAPF) c. 60deg.S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65deg.S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards "jetting" onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the subantarctic belt. In the Early-early Middle Miocene (25-15 Ma), warm subtropical waters expanded southwards into the northern NZSSO, possibly associated with reduced ice volume on East Antarctica but particularly with restriction of the Indonesian gateway and redirection of intensified warm surface flows southwards into the Tasman Sea, as well as complete opening of the Drake gateway by 23 Ma allowing more complete decoupling of cool circum-Antarctic flow from the subtropical waters. During the late Middle-Late Miocene (15-5 Ma), both the STF and SAF proper were established in their present relative positions across and about the Campbell Plateau, respectively, accompanying renewed ice buildup on East Antarctica and formation of a permanent ice sheet on West Antarctica, as well as generally more expansive and intensified circum-Antarctic flow. The ultimate control on the history of oceanic front development in the NZSSO has been plate tectonics through its influence on the paleogeographic changes of the Australian-New Zealand-Antarctic continents and their intervening oceanic basins, the timing of opening and closing of critical seaways, the potential for submarine ridges and plateaus to exert some bathymetric control on the location of fronts, and the evolving ice budget on the Antarctic continent. The broad trends of the Cenozoic climate curve for New Zealand deduced from fossil evidence in the uplifted marine sedimentary record correspond well to the principal paleoceanographic events controlling the evolution and migration of the oceanic fronts in the NZSSO

    Tuning a Josephson junction through a quantum critical point

    Full text link
    We tune the barrier of a Josephson junction through a zero-temperature metal-insulator transition and study the thermodynamic behavior of the junction in the proximity of the quantum-critical point. We examine a short-coherence-length superconductor and a barrier (that is described by a Falicov-Kimball model) using the local approximation and dynamical mean-field theory. The inhomogeneous system is self-consistently solved by performing a Fourier transformation in the planar momentum and exactly inverting the remaining one-dimensional matrix with the renormalized perturbation expansion. Our results show a delicate interplay between oscillations on the scale of the Fermi wavelength and pair-field correlations on the scale of the coherence length, variations in the current-phase relationship, and dramatic changes in the characteristic voltage as a function of the barrier thickness or correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe
    corecore