175 research outputs found
Three-Dimensional Normal Human Neutral Progenitor Tissue-Like Assemblies: A Model for Persistent Varicella-Zoster Virus Infection and Platform to Study Oxidate Stress and Damage in Multiple Hit Scenarios
The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpes virus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex three-dimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]. By combining the RFs of microgravity, radiation, and viral infection we will demonstrate that living in the space environment leads to significant physiological consequences for the peripheral and subsequently the central nervous system (PNS, CNS) associated with OSaD generation and consequentially endangers long-duration and exploration-class missions
Three-Dimensional Normal Human Neural Progenitor Tissue-Like Assemblies: A Model for Persistent Varicell-Zoster Virus Infection and Platform to Study Viral Infectivity and Oxidative Stress and Damage
The environment of space results in a multitude of challenges to the human physiology that present barriers to extended habitation and exploration. Over 40 years of investigation to define countermeasures to address space flight adaptation has left gaps in our knowledge regarding mitigation strategies partly due to the lack of investigative tools, monitoring strategies, and real time diagnostics to understand the central causative agent(s) responsible for physiologic adaptation and maintaining homeostasis. Spaceflight-adaptation syndrome is the combination of space environmental conditions and the synergistic reaction of the human physiology. Our work addresses the role of oxidative stress and damage (OSaD) as a negative and contributing Risk Factor (RF) in the following areas of combined spaceflight related dysregulation: i) radiation induced cellular damage [1], [2] ii) immune impacts and the inflammatory response [3], [4] and iii) varicella zoster virus (VZV) reactivation [5]. Varicella-zoster (VZV)/Chicken Pox virus is a neurotropic human alphaherpesvirus resulting in varicella upon primary infection, suppressed by the immune system becomes latent in ganglionic neurons, and reactivates under stress events to re-express in zoster and possibly shingles. Our laboratory has developed a complex threedimensional (3D) normal human neural tissue model that emulates several characteristics of the human trigeminal ganglia (TG) and allows the study of combinatorial experimentation which addresses, simultaneously, OSaD associated with Spaceflight adaptation and habitation [6]
Mechanism of virus attenuation by codon pair deoptimization
Codon pair deoptimization is an efficient virus attenuation strategy, but the mechanism that leads to attenuation is unknown. The strategy involves synthetic recoding of viral genomes that alters the positions of synonymous codons, thereby increasing the number of suboptimal codon pairs and CpG dinucleotides in recoded genomes. Here we identify the molecular mechanism of codon pair deoptimization-based attenuation by studying recoded influenza A viruses. We show that suboptimal codon pairs cause attenuation, whereas the increase of CpG dinucleotides has no effect. Furthermore, we show that suboptimal codon pairs reduce both mRNA stability and translation efficiency of codon pair-deoptimized genes. Consequently, reduced protein production directly causes virus attenuation. Our study provides evidence that suboptimal codon pairs are major determinants of mRNA stability. Additionally, it demonstrates that codon pair bias canĀ be used to increase mRNA stability and protein production of synthetic genes in many areas of biotechnology
Herpesvirus Telomerase RNA(vTR)-Dependent Lymphoma Formation Does Not Require Interaction of vTR with Telomerase Reverse Transcriptase (TERT)
Telomerase is a ribonucleoprotein complex involved in the maintenance of telomeres, a protective structure at the distal ends of chromosomes. The enzyme complex contains two main components, telomerase reverse transcriptase (TERT), the catalytic subunit, and telomerase RNA (TR), which serves as a template for the addition of telomeric repeats (TTAGGG)n. Marek's disease virus (MDV), an oncogenic herpesvirus inducing fatal lymphoma in chickens, encodes a TR homologue, viral TR (vTR), which significantly contributes to MDV-induced lymphomagenesis. As recent studies have suggested that TRs possess functions independently of telomerase activity, we investigated if the tumor-promoting properties of MDV vTR are dependent on formation of a functional telomerase complex. The P6.1 stem-loop of TR is known to mediate TR-TERT complex formation and we show here that interaction of vTR with TERT and, consequently, telomerase activity was efficiently abrogated by the disruption of the vTR P6.1 stem-loop (P6.1mut). Recombinant MDV carrying the P6.1mut stem-loop mutation were generated and tested for their behavior in the natural host in vivo. In contrast to viruses lacking vTR, all animals infected with the P6.1mut viruses developed MDV-induced lymphomas, but onset of tumor formation was significantly delayed. P6.1mut viruses induced enhanced metastasis, indicating functionality of non-complexed vTR in tumor dissemination. We discovered that RPL22, a cellular factor involved in T-cell development and virus-induced transformation, directly interacts with wild-type and mutant vTR and is, consequently, relocalized to the nucleoplasm. Our study provides the first evidence that expression of TR, in this case encoded by a herpesvirus, is pro-oncogenic in the absence of telomerase activity
Rift Valley Fever Phlebovirus Reassortment Study in Sheep
Rift Valley fever (RVF) in ungulates and humans is caused by a mosquito-borne RVF phlebovirus (RVFV). Live attenuated vaccines are used in livestock (sheep and cattle) to control RVF in endemic regions during outbreaks. The ability of two or more different RVFV strains to reassort when co-infecting a host cell is a significant veterinary and public health concern due to the potential emergence of newly reassorted viruses, since reassortment of RVFVs has been documented in nature and in experimental infection studies. Due to the very limited information regarding the frequency and dynamics of RVFV reassortment, we evaluated the efficiency of RVFV reassortment in sheep, a natural host for this zoonotic pathogen. Co-infection experiments were performed, first in vitro in sheep-derived cells, and subsequently in vivo in sheep. Two RVFV co-infection groups were evaluated: group I consisted of co-infection with two wild-type (WT) RVFV strains, Kenya 128B-15 (Ken06) and Saudi Arabia SA01-1322 (SA01), while group II consisted of co-infection with the live attenuated virus (LAV) vaccine strain MP-12 and a WT strain, Ken06. In the in vitro experiments, the virus supernatants were collected 24 h post-infection. In the in vivo experiments, clinical signs were monitored, and blood and tissues were collected at various time points up to nine days post-challenge for analyses. Cell culture supernatants and samples from sheep were processed, and plaque-isolated viruses were genotyped to determine reassortment frequency. Our results show that RVFV reassortment is more efficient in co-infected sheep-derived cells compared to co-infected sheep. In vitro, the reassortment frequencies reached 37.9% for the group I co-infected cells and 25.4% for the group II co-infected cells. In contrast, we detected just 1.7% reassortant viruses from group I sheep co-infected with the two WT strains, while no reassortants were detected from group II sheep co-infected with the WT and LAV strains. The results indicate that RVFV reassortment occurs at a lower frequency in vivo in sheep when compared to in vitro conditions in sheep-derived cells. Further studies are needed to better understand the implications of RVFV reassortment in relation to virulence and transmission dynamics in the host and the vector. The knowledge learned from these studies on reassortment is important for understanding the dynamics of RVFV evolution
Epithelial response to IFN-Ī³ promotes SARS-CoV-2 infection
SARS-CoV-2, the agent that causes COVID-19, invades epithelial cells, including those of the respiratory and gastrointestinal mucosa, using angiotensin-converting enzyme-2 (ACE2) as a receptor. Subsequent inflammation can promote rapid virus clearance, but severe cases of COVID-19 are characterized by an inefficient immune response that fails to clear the infection. Using primary epithelial organoids from human colon, we explored how the central antiviral mediator IFN-Ī³, which is elevated in COVID-19, affects epithelial cell differentiation, ACE2 expression, and susceptibility to infection with SARS-CoV-2. In mouse and human colon, ACE2 is mainly expressed by surface enterocytes. Inducing enterocyte differentiation in organoid culture resulted in increased ACE2 production. IFN-Ī³ treatment promoted differentiation into mature KRT20+ enterocytes expressing high levels of ACE2, increased susceptibility to SARS-CoV-2 infection and resulted in enhanced virus production in infected cells. Similarly, infection-induced epithelial interferon signaling promoted enterocyte maturation and enhanced ACE2 expression. We here reveal a mechanism by which IFN-Ī³-driven inflammatory responses induce a vulnerable epithelial state with robust replication of SARS-CoV-2, which may have an impact on disease outcome and virus transmission
Herpesvirus Telomerase RNA (vTR) with a Mutated Template Sequence Abrogates Herpesvirus-Induced Lymphomagenesis
Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced lymphoma
A hepatitis B virus causes chronic infections in equids worldwide
Preclinical testing of novel therapeutics for chronic hepatitis B (CHB) requires suitable animal models. Equids host homologs of hepatitis C virus (HCV). Because coinfections of hepatitis B virus (HBV) and HCV occur in humans, we screened 2,917 specimens from equids from five continents for HBV. We discovered a distinct HBV species (Equid HBV, EqHBV) in 3.2% of donkeys and zebras by PCR and antibodies against EqHBV in 5.4% of donkeys and zebras. Molecular, histopathological, and biochemical analyses revealed that infection patterns of EqHBV resembled those of HBV in humans, including hepatotropism, moderate liver damage, evolutionary stasis, and potential horizontal virus transmission. Naturally infected donkeys showed chronic infections resembling CHB with high viral loads of up to 2.6 Ć 109 mean copies per milliliter serum for >6 mo and weak antibody responses. Antibodies against Equid HCV were codetected in 26.5% of donkeys seropositive for EqHBV, corroborating susceptibility to both hepatitis viruses. Deltavirus pseudotypes carrying EqHBV surface proteins were unable to infect human cells via the HBV receptor NTCP (Na+/taurocholate cotransporting polypeptide), suggesting alternative viral entry mechanisms. Both HBV and EqHBV deltavirus pseudotypes infected primary horse hepatocytes in vitro, supporting a broad host range for EqHBV among equids and suggesting that horses might be suitable for EqHBV and HBV infections in vivo. Evolutionary analyses suggested that EqHBV originated in Africa several thousand years ago, commensurate with the domestication of donkeys. In sum, EqHBV naturally infects diverse equids and mimics HBV infection patterns. Equids provide a unique opportunity for preclinical testing of novel therapeutics for CHB and to investigate HBV/ HCV interplay upon coinfection
Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H
<p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV), which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition, we examined the domains of the MDV glycoproteins gH and gB.</p> <p>Results</p> <p>Four peptides derived from the MDV glycoprotein gH (gHH1, gHH2, gHH3, and gHH5) and one peptide derived from gB (gBH1) could efficiently inhibit plaque formation in primary chicken embryo fibroblast cells (CEFs) with 50% inhibitory concentrations (IC<sub>50</sub>) of below 12 Ī¼M. These peptides were also significantly able to reduce lesion formation on chorioallantoic membranes (CAMs) of infected chicken embryos at a concentration of 0.5 mM in 60 Ī¼l of solution. The HR2 peptide from Newcastle disease virus (NDVHR2) exerted effects on MDV specifically at the stage of virus entry (i.e., in a cell pre-treatment assay and an embryo co-treatment assay), suggesting cross-inhibitory effects of NDV HR2 on MDV infection. None of the peptides exhibited cytotoxic effects at the concentrations tested. Structural characteristics of the five peptides were examined further.</p> <p>Conclusions</p> <p>The five MDV-derived peptides demonstrated potent antiviral activity, not only in plaque formation assays in vitro, but also in lesion formation assays in vivo. The present study examining the antiviral activity of these MDV peptides, which are useful as small-molecule antiviral inhibitors, provides information about the MDV entry mechanism.</p
- ā¦