92 research outputs found

    Topological Constraint Theory Analysis of Rigidity Transition in Highly Coordinate Amorphous Hydrogenated Boron Carbide

    Get PDF
    Topological constraint theory (TCT) has revealed itself to be a powerful tool in interpreting the behaviors of amorphous solids. The theory predicts a transition between a “rigid” overconstrained network and a “floppy” underconstrained network as a function of connectivity or average coordination number, 〈r〉. The predicted results have been shown experimentally for various glassy materials, the majority of these being based on 4-fold-coordinate networks such as chalcogenide and oxide glasses. Here, we demonstrate the broader applicability of topological constraint theory to uniquely coordinated amorphous hydrogenated boron carbide (a-BC:H), based on 6-fold-coordinate boron atoms arranged into partially hydrogenated interconnected 12-vertex icosahedra. We have produced a substantial set of plasma-enhanced chemical vapor deposited a-BC:H films with a large range of densities and network coordination, and demonstrate a clear threshold in Young\u27s modulus as a function of 〈r〉, ascribed to a rigidity transition. We investigate constraint counting strategies in this material and show that by treating icosahedra as “superatoms,” a rigidity transition is observed within the range of the theoretically predicted 〈r〉c value of 2.4 for covalent solids with bond-stretching and bond-bending forces. This experimental data set for a-BC:H is unique in that it represents a uniform change in connectivity with 〈r〉 and demonstrates a distinct rigidity transition with data points both above and below the transition threshold. Finally, we discuss how TCT can be applied to explain and optimize mechanical and dielectric properties in a-BC:H and related materials in the context of microelectronics applications

    Carbon‐Enriched Amorphous Hydrogenated Boron Carbide Films for Very‐Low‐k Interlayer Dielectrics

    Full text link
    A longstanding challenge in ultralarge‐scale integration has been the continued improvement in low‐dielectric‐constant (low‐k) interlayer dielectric materials and other specialized layers in back‐end‐of‐the‐line interconnect fabrication. Modeled after the success of carbon‐containing organosilicate materials, carbon‐enriched amorphous hydrogenated boron carbide (a‐BxC:Hy) films are grown by plasma‐enhanced chemical vapor deposition from ortho‐carborane and methane. These films contain more extraicosahedral sp3 hydrocarbon groups than nonenriched a‐BxC:Hy films, as revealed by FTIR and NMR spectroscopy, and also exhibit lower dielectric constants than their nonenriched counterparts, notably due to low densities combined with a low distortion and orientation contribution to the total polarizability. Films with dielectric constant as low as 2.5 are reported with excellent electrical stability (leakage current of 10−9 A cm−2 at 2 MV cm−1 and breakdown voltage of >6 MV cm−1), good thermal conductivity of 0.31 ± 0.03 W m−1 K−1, and high projected Young’s modulus of 12 ± 3 GPa. These properties rival those of leading SiOC:H materials, and position a‐BxC:Hy as an important complement to traditional Si‐based materials to meet the complex needs of next‐generation interconnect fabrication.Carbon‐enriched amorphous hydrogenated boron carbide films are demonstrated with dielectric constant (k) as low as 2.5—attributed to low densities combined with network‐rigidifying CH2 bridging groups—as well as excellent electrical, thermal, and mechanical properties, rivaling those of state‐of‐the‐art silicon‐based low‐k dielectric materials.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141869/1/aelm201700116_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141869/2/aelm201700116.pd

    Collective Animal Behavior from Bayesian Estimation and Probability Matching

    Get PDF
    Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.
In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior

    Severity of cardiovascular disease outcomes among patients with HIV is related to markers of inflammation and coagulation

    Get PDF
    Background-In the general population, raised levels of inflammatory markers are stronger predictors of fatal than nonfatal cardiovascular disease (CVD) events. People with HIV have elevated levels of interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and D-dimer; HIV-induced activation of inflammatory and coagulation pathways may be responsible for their greater risk of CVD. Whether the enhanced inflammation and coagulation associated with HIV is associated with more fatal CVD events has not been investigated. Methods and Results-Biomarkers were measured at baseline for 9764 patients with HIV and no history of CVD. Of these patients, we focus on the 288 that experienced either a fatal (n=74) or nonfatal (n=214) CVD event over a median of 5 years. Odds ratios (ORs) (fatal versus nonfatal CVD) (95% confidence intervals [CIs]) associated with a doubling of IL-6, D-dimer, hsCRP, and a 1-unit increase in an IL-6 and D-dimer score, measured a median of 2.6 years before the event, were 1.39 (1.07 to 1.79), 1.40 (1.10 to 1.78), 1.09 (0.93 to 1.28), and 1.51 (1.15 to 1.97), respectively. Of the 214 patients with nonfatal CVD, 23 died during follow-up. Hazard ratios (95% CI) for all-cause mortality were 1.72 (1.28 to 2.31), 1.73 (1.27 to 2.36), 1.44 (1.15 to 1.80), and 1.88 (1.39 to 2.55), respectively, for IL-6, D-dimer, hsCRP, and the IL-6 and D-dimer score. Conclusions-Higher IL-6 and D-dimer levels reflecting enhanced inflammation and coagulation associated with HIV are associated with a greater risk of fatal CVD and a greater risk of death after a nonfatal CVD even

    A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats

    Get PDF
    The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain

    Electrically active point defects in n-type 4H¿SiC

    Get PDF
    An electrically active defect has been observed at a level position of ∼ 0.70 eV below the conduction band edge (Ec) with an extrapolated capture cross section of ∼ 5×10−14 cm2 in epitaxial layers .
    corecore