3,524 research outputs found

    The "normal" state of superconducting cuprates might really be normal after all

    Get PDF
    High magnetic field studies of cuprate superconductors revealed a non-BCS temperature dependence of the upper critical field Hc2(T)H_{c2}(T) determined resistively by several groups. These determinations caused some doubts on the grounds of both the contrasting effect of the magnetic field on the in-plane and out-of-plane resistances reported for large Bi2212 sample and the large Nernst signal \emph{well above} TcT_{c}. Here we present both ρab(B)\rho_{ab}(B) and ρc(B)\rho_{c}(B) of tiny Bi2212 crystals in magnetic fields up to 50 Tesla. None of our measurements revealed a situation when on the field increase ρc\rho_c reaches its maximum while ρab\rho_{ab} remains very small if not zero. The resistive %upper critical fields estimated from the in-plane and out-of-plane Hc2(T)H_{c2}(T) estimated from ρab(B)\rho_{ab}(B) and ρc(B)\rho_{c}(B) are approximately the same. Our results support any theory of cuprates that describes the state above the resistive phase transition as perfectly normal with a zero off-diagonal order parameter. In particular, the anomalous Nernst effect above the resistive phase transition in high-TcT_{c} cuprates can be described quantitatively as a normal state phenomenon in a model with itinerant and localised fermions and/or charged bosons

    A possibility to measure elastic photon--photon scattering in vacuum

    Full text link
    Photon--photon scattering in vacuum due to the interaction with virtual electron-positron pairs is a consequence of quantum electrodynamics. A way for detecting this phenomenon has been devised based on interacting modes generated in microwave waveguides or cavities [G. Brodin, M. Marklund and L. Stenflo, Phys. Rev. Lett. \textbf{87} 171801 (2001)]. Here we materialize these ideas, suggest a concrete cavity geometry, make quantitative estimates and propose experimental details. It is found that detection of photon-photon scattering can be within the reach of present day technology.Comment: 7 pages, 3 figure

    Nernst effect in poor conductors and the cuprate superconductors

    Get PDF
    We calculate the Nernst signal in disordered conductors with the chemical potential near the mobility edge. The Nernst effect originates from interference of itinerant and localised-carrier contributions to the thermomagnetic transport. It reveals a strong temperature and magnetic field dependence, which describes quantitatively the anomalous Nernst signal in high-Tc cuprates.Comment: 4 pages, 2 figures, thermopower is discussed, Fig.1 change

    How normal is the "normal" state of superconducting cuprates?

    Get PDF
    High magnetic field studies of the cuprate superconductors revealed a non-BCS temperature dependence of the upper critical field Hc2(T)H_{c2}(T) determined resistively by several groups. These determinations caused some doubts on the grounds of the contrasting effect of the magnetic field on the in-plane, ρab\rho_{ab}, and out-of-plane, ρc\rho_{c} resistances reported for large sample of Bi2212. Here we present careful measurements of both ρab(B)\rho_{ab}(B) and ρc(B)\rho_{c}(B) of tiny Bi2212 crystals in magnetic fields up to 50 Tesla. None of our measurements revealed a situation when on field increase ρc\rho_c reaches its maximum while ρab\rho_{ab} remains very small if not zero. The resistive Hc2(T)H_{c2}(T) estimated from ρab(B)\rho_{ab}(B) and ρc(B)\rho_{c}(B) are approximately the same. We also present a simple explanation of the unusual Nernst signal in superconducting cuprates as a normal state phenomenon. Our results support any theory of cuprates, which describes the state above the resistive phase transition as perfectly 'normal' with a zero off-diagonal order parameter

    Detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides

    Get PDF
    We present a novel method for detecting nonlinearities, due to quantum electrodynamics through photon-photon scattering, in Maxwell's equation. The photon-photon scattering gives rise to self-interaction terms, which are similar to the nonlinearities due to the polarisation in nonlinear optics. These self-interaction terms vanish in the limit of parallel propagating waves, but if instead of parallel propagating waves the modes generated in wavesguides are used, there will be a non-zero total effect. Based on this idea, we calculate the nonlinear excitation of new modes and estimate the strength of this effect. Furthermore, we suggest a principal experimental setup.Comment: 4 pages, REVTeX3. To appear in Phys. Rev. Let

    C-axis negative magnetoresistance and upper critical field of Bi2Sr2CaCu2O8

    Get PDF
    The out-of-plane resistance and the resistive upper critical field of BSCCO-2212 single crystals with Tc=91-93 K have been measured in magnetic fields up to 50 T over a wide temperature range. The results are characterised by a positive linear magnetoresistance in the superconducting state and a negative linear magnetoresistance in the normal state. The zero field normal state c-axis resistance, the negative linear normal state magnetoresistance, and the divergent upper critical field Hc2(T)are explained in the framework of the bipolaron theory of superconductivity.Comment: 4 pages (REVTeX), 4 figures, submitted to Physical Review Letters 6 April 1999, rejected in February 2000, accepted for publication in Europhysics Letters on 31 May 200

    The e-learning grid: integrating e-pedagogy with novel technologies

    No full text
    In this paper we present the approach taken by the European E-Learning Grid consortium in building learning Grids. We focus on combining collaborative and peer-to-peer approaches with the relevant pedagogical paradigms where we can arrive at the E-Learning Grid. We present a framework that supports the creation of multi-user collaborative sessions, allowing users to self-organise and communicate, share tasks, workloads, and content, and interact across multiple different computing platforms and are aiming for heterogeneity in terms of both network and operating system platforms centred on fundamental technologies
    corecore