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The ”normal” state of superconducting cuprates might really be normal after all
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High magnetic field studies of cuprate superconductors revealed a non-BCS temperature depen-
dence of the upper critical field Hc2(T ) determined resistively by several groups. These determi-
nations caused some doubts on the grounds of both the contrasting effect of the magnetic field on
the in-plane and out-of-plane resistances reported for large Bi2212 sample and the large Nernst
signal well above Tc. Here we present both ρab(B) and ρc(B) of tiny Bi2212 crystals in magnetic
fields up to 50 Tesla. None of our measurements revealed a situation when on the field increase ρc

reaches its maximum while ρab remains very small if not zero. The resistive Hc2(T ) estimated from
ρab(B) and ρc(B) are approximately the same. Our results support any theory of cuprates that
describes the state above the resistive phase transition as perfectly normal with a zero off-diagonal
order parameter. In particular, the anomalous Nernst effect above the resistive phase transition in
high-Tc cuprates can be described quantitatively as a normal state phenomenon in a model with
itinerant and localised fermions and/or charged bosons.

PACS numbers: 74.40.+k, 72.15.Jf, 74.72.-h, 74.25.Fy

A pseudogap is believed to be responsible for the
non Fermi-liquid normal state of cuprate superconduc-
tors. Various microscopic models of the pseudogap pro-
posed are mostly based on strong electron correlations [1],
and/or on strong electron-phonon interaction[2]. There
is also a phenomenological scenario [3], where the su-
perconducting order parameter (the Bogoliubov-Gor’kov
anomalous average F (r, r′) = 〈ψ↓(r)ψ↑(r

′〉) does not dis-
appear at Tc but at much higher (pseudogap) tempera-
ture. While the scenario [3] was found to be inconsistent
with the ‘intrinsic tunnelling’ I-V characteristics, the dis-
covery of the Joule heating origin of the gap-like I-V non-
linearities made that objection irrelevant [4]. Some other
measurements [5] also provide evidence in support of [3].

In line with the scenario, several authors [6, 7] sug-
gested a radical revision of the magnetic phase diagram
of the cuprates with an upper critical field much higher
than the resistive Hc2(T ). In particular, Ref.[6] ques-
tioned the resistive determination of Hc2(T ) [8, 9], claim-
ing that, while ρc measures the inter-plane tunnelling,
only the in-plane data represent a true normal state.
The main argument in favour of this claim came from
the radically different field dependencies of ρc and ρab in
Ref.[6] (shown below in our Fig.2B). According to this
finding, a magnetic field sufficient to recover the normal
state ρc, leaves in-plane superconductivity virtually unaf-
fected. This discrepancy suggests that Bi2212 crystals do
not lose their off-diagonal order in Cu02 planes even well
above Hc2(T ) determined from ρc(B, T ). However, this
conclusion is based on one measurement and so certainly
deserves experimental verification, which was not possi-
ble until recently because of the lack of reliable ρab(B, T )
for Bi2212.

Quite similar conclusions followed from thermomag-
netic studies of superconducting cuprates. Here a large
Nernst signal well above Tc has been attributed to a vor-

tex motion. As a result, the magnetic phase diagram of

the cuprates has been revised radically. Most surpris-
ingly, Ref.[7] estimated Hc2 at the zero-field transition

temperature, Tc0, of Bi2212 as high as 50-150Tesla.

On the other hand, any scenario with F (r, r′) 6= 0 in
the ”normal” state is difficult to reconcile with the ex-
tremely sharp resistive and magnetic transitions at Tc in
single crystals of cuprates. Above Tc, the uniform mag-
netic susceptibility is paramagnetic and the resistivity
is perfectly ’normal’, showing only a few percent posi-
tive or negative magnetoresistance (MR). Both in-plane
[10, 11, 12] and out-of-plane [8] resistive transitions re-
main sharp in the magnetic field in high-quality samples,
providing a reliable determination of a genuine Hc2(T ).
These and some other observations [13] do not support
any stationary superconducting order parameter above
Tc.

Resolution of these issues, which affect fundamental
conclusions about the nature of superconductivity in
highly anisotropic layered cuprates, requires further care-
ful experiments and transparent interpretations. Here we
present systematic measurements of both in-plane and
out-of-plane MRs of small Bi2212 single crystals sub-
jected to magnetic fields, B ≤ 50 Tesla, B ⊥ (ab). Our
measurements reproduced neither the unusual field de-
pendence of ρab nor the contrasting effect of the field as
in [6], which are most probably an experimental arte-
fact. On the contrary, they show that Hc2(T ) estimated
from ρab and ρc are nearly identical. These results, along
with a simple explanation of the unusual Nernst signal
in cuprates as a normal state phenomenon [14], strongly
support any microscopic theory of cuprates with a zero
off-diagonal order parameter above resistive Tc(B).

Reliable measurements of the resistivity tensor require
defect-free samples. This is of prime importance for in-
plane MR because, owing to the extreme anisotropy of
Bi2212 [15], even unit-cell scale defects will result in a
significant out-of-plane contribution. Not only are such
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FIG. 1: Contact layout and examples of ρc(T ) and ρab(T )
measured on small samples cleaved from the same Bi2212
crystal. ρc contamination of ρab is ∼ 10−5 and indistinguish-
able for the curves labelled as 3 and 1 respectively.

minor defects impossible to detect by conventional tech-
niques, but ρab contamination with ρc might occur even
in a perfect crystal with nonuniform current distribution.
For these reasons, we paid special attention to sample
preparation and selection [15]. Since the extremely high
and temperature dependent electric anisotropy of Bi2212
prevents reliable measurement of both the in-plane and
out-of-plane resistances on the same sample, we mea-
sured ρc and ρab on different pieces of the same high-
quality, optimally and slightly underdoped Bi2212 par-
ent crystals with Tc0 ≈87-92K. As the specific demands
of pulsed field experiments make it essential to use tiny
specimens, we measured ρc on samples with in-plane di-
mensions from ≃ 30 × 30µm2 to ≃ 80 × 80µm2, while
ρab was studied on longer crystals, from ≃ 300 × 11µm2

to ≃ 780 × 22µm2. The samples for this study were
selected on the basis of comparative analysis of trans-
port measurements of 7-12 pairs of such samples, cleaved
from different places of the same parent crystal (typically
of 1 − 3µm thickness). To achieve a uniform in-plane

current distribution, the current contacts were made by
immersion of the crystals’ ends into diluted conductive
composite; ρc was measured with the contacts deposited
on both ab-faces, see Fig.1. The uncertainty of the sam-
ples’ dimensions is most probable cause of the mismatch
of ρc in different pieces, Fig.1B. Unlike ρc(T ) curves,
ρab(T ) of different pieces often reveal qualitatively differ-
ent behaviour, illustrated in Fig.1A. While the majority
of the ‘ρab-samples’ had the metallic type of zero-field
ρab(T ) represented by the curve 1, others demonstrated
the sample-dependent ρab(T ) upturn, which we attribute
to ρc contamination. Only the samples with the lowest
ρab(T ) were selected for this study. The metallic type of
zero-field ρab(T ) and the sign of its normal state MR [15]
indicate a vanishing ρc-contribution. The absence of hys-
teresis in the ρ(B) data obtained on the rising and falling
sides of the pulse and the consistency of ρ(B) taken at
the same temperature in pulses of different Bmax exclude
any measurable heating effects. The Ohmic response is
confirmed by the consistency of ρ(B) measured at identi-
cal conditions with different currents, 10-1000A/cm2 for
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FIG. 2: ρc(B) and ρab(B) of Bi2212 at ∼68K, normalised by
corresponding ρN(0, T ) obtained with the linear extrapolation
from the normal state region (short dashes). The linear fits,
shown by long dashed lines, refer to the flux-flow region. Inset
A: Hc2 estimated from ρab(B) and ρc(B) is shown by the open
and solid symbols respectively together with the fit, Hc2(T ) ∼

(t−1
−t1/2)3/2, with t = T/Tc [21] (broken line). Inset B shows

ρc and ρab from Ref.[6].

ρab and 0.1-20A/cm2 for ρc.

Fig.2 shows the typical ρc(B) and ρab(B) taken below
Tc0 of a Bi2212 single crystal. The low-field portions of
the curves correspond to the resistance driven by vortex
dynamics. Here, a non-linear ρ(B) dependence is fol-
lowed by a regime in which linear dependence fits the
experimental observations rather well, Fig.2. It is natu-
ral to attribute the high field portions of the curves in
Fig.2 (assumed to be above Hc2) to a normal state [9].
Here, the c-axis high-field MR appears to be negative and
quasi-linear in B in a wide temperature range both above
and below Tc0. Contrary to ρc(B), the normal state in-
plane MR is positive (see [15] and references therein for an
explanation). The resistive upper critical field, Hc2(T),
is estimated from ρc(B) and ρab(B) either as the inter-
section of two linear approximations in Fig.2, or from
the flux-flow resistance as Hc2 = ρN (0, T )(∂ρFF/∂B)−1;
both estimates are found to be almost identical. This
procedure allows us to separate contributions originating
from the normal and superconducting states and, in par-
ticular, to avoid ambiguity resulting from fluctuations
in the crossover region. The downward deviations from
the linear field dependence at fields around Hc2 in Fig.2
are most likely caused by the conventional (3D-XY [16])
critical behaviour rather than the stationary off-diagonal
order parameter in the ”normal” phase [17]. The reason-
able concordance of Hc2(T ) estimates from ρc(B) and
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FIG. 3: � and � represent ν = ey/B measured on Bi2201 [28]
and YBCO [29] respectively; the solid and broken lines show
fit with a ∝ T−6

− ν0 for ν0=0 and -0.03µV/KT respectively.
Inset: Hc2(T ) obtained from the independent resistive studies
of Bi2201 [19, 20]; the broken and solid lines correspond to
the data taken from ρc and ρab respectively.

ρab(B) (Fig.2A) favours our association of the resistive
Hc2 with the upper critical field, especially given the ap-
parently different mechanisms responsible for ρab and ρc

[15].

Our conclusion is based on the results obtained during
several hundred measurements performed on three pairs
of crystals. None of those revealed a situation in which on
field increase ρc reaches its maximum while ρab remains
very small if not zero as in [6] (see Fig.2B). Since the au-
thors of Ref.[6] measured ′ρab(B)′ by means of contacts
situated on the same face of the crystal while the current
was injected into the opposite face, their curve could not

represent the true ρab. We cannot exclude the possi-
bility that this observation might be caused by current
redistribution in the medium with field and temperature
dependent anisotropy. This opinion is supported by the
independent study of current redistribution in homoge-
neous Bi2212, [18]. However, the threefold ρc enhance-
ment warrants inhomogeneity of the huge crystal in [6]
so that the results of [18] may not be directly applica-
ble to this case. Neither the current redistribution nor
imperfections of the crystal were accounted for in [6].

Our conclusions are supported by independent stud-
ies of a single-layer cuprate Bi(La)2201 with similar
anisotropy. If we apply the routine procedure for the
Hc2(T ) evaluation[8], very similar values of Hc2(T ) are
obtained from ρab and ρc measured on the same crystals
[19] and films [20] (see broken and solid lines in the inset
to Fig.3). The functional similarity of Hc2(T ) depen-
dences estimated for the same conditions from resistivi-

ties of physically different origin is evident from Fig.2A
and Fig.3(inset). Remarkably, these Hc2(T ) are com-
patible with the Bose-Einstein condensation field of pre-
formed charged bosons [21] (Fig.2A), and also with some
other models [22]. The described experiments were per-
formed in optimally doped or only slightly underdoped
samples. It would be desirable to extend these studies
to more underdoped samples, where the conditions for
bosonic superconductivity [2] are definitely satisfied.

Finally, we briefly address the origin of the Nernst ef-
fect in superconducting cuprates, which is found to be
enormous well above Tc, in drastic contrast with con-
ventional superconductors. While a significant fraction
of research in the field of high-temperature supercon-
ductivity [23] describes the unusual Nernst signal as a
signature of a nonzero superconducting order parameter
above (resistive) Tc, a key to resolution of this dichotomy
lies most likely in a qualitatively different normal state
of cuprates as compared with conventional supercon-
ductors. While the latter are reasonably good metals,
cuprates are known to be non-stoichiometric compounds.
Moreover, undoped cuprates are insulators and their (su-
per)conductivity appears as a result of doping, which in-
evitably introduces additional disorder. For these rea-
sons, the conventional theory of heavily doped semi-
conductors and disordered metals might provide an ad-
equate description of the normal state kinetic proper-
ties of cuprates (see [14] for more details). Carriers in
doped semiconductors occupy states localised by disor-
der and itinerant Bloch-like states. Both types of car-
riers contribute to transport properties if the chemical
potential µ (or the Fermi level) is close to the energy at
which the lowest itinerant state appears (i.e. the mo-
bility edge). When the chemical potential is near the
mobility edge, and the effective mass approximation is
applied, there is no Nernst signal from itinerant carri-
ers alone because of the so-called Sondheimer cancella-
tion [24]. However, when localised carriers contribute to
the longitudinal transport, a finite positive Nernst signal
ey ≡ −Ey/▽xT appears as [14]

ey

ρ
=
kB

e
rθσl, (1)

where ρ = 1/[(2s+1)σxx] is the resistivity, s is the carrier
spin, r is nearly constant (r≈14.3 for fermions s=1/2,
r≈2.4 for bosons s=0), and Θ is the Hall angle. Here,
σxx is the conductivity of itinerant carriers, and σl is
the conductivity of localised carriers, which obeys Mott’s
law, σl = σ0 exp

[

−(T0/T )1/3
]

. In two dimensions T0 ≈

8α2/(kBNl), where Nl is the DOS at the Fermi level[25,
26, 27].

In a sufficiently strong magnetic field, the radius of
the ’impurity’ wave function α−1 is about the magnetic
length, α≈(eB)1/2. Then the Nernst signal is given by

ey

Bρ
= a(T ) exp

[

−b(B/T )1/3

]

, (2)

where a(T ) ∝ T−6 [14] and b = 2[e/(kBNl)]
1/3 is a con-
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stant determined by the density of impurities. As fol-
lows from Eq.(2), a(T ) is mostly responsible for the tem-
perature dependence of the Nernst voltage above Tc(B).
Interestingly, the temperature dependences of the ex-
perimental Nernst voltage taken at fixed field, ey/B,
in LSCO, YBCO, Bi2212, and Bi(La)2201 single crys-
tals agree reasonably with this theoretical result, as is
illustrated in Fig.3 for YBCO-0.45 and Bi(La)2201-0.4.
Although this qualitative agreement favours our model,
convincing verification of the theory would be provided
by analysis of the complementary ey(B, T ) and ρ(B, T )
2D-arrays of experimental data. This decisive compar-
ison was recently performed. Remarkably, we found
that the single-parameter relation, Eq.(2), quantitatively

describes both the field and temperature dependencies
of ey/(Bρ) measured experimentally above the resistive
critical temperature Tc(B) (see Ref.[14] for more details).
Thus we conclude that the simple model with itinerant
and localised fermions and/or charged bosons is compat-
ible with most significant thermomagnetic and kinetic
measurements in superconducting cuprates.

To conclude, we have shown that reliable experimental
data do not require radical revision of the magnetic phase
diagram of cuprates [30]. In particular, the reasonable
concordance of resistive upper critical fields estimated
from ρab(B) and ρc(B) favours our assignment of resistive
Hc2 to the genuine upper critical field, especially given
the apparently different mechanisms responsible for the
in-plane and out-of-plane resistivity in the normal state
of Bi2212 and Bi(La)2201, as evidenced by the huge and
temperature dependent anisotropy, ρc/ρab ≥ 104 − 105.
Our experimental ρab(T,B) and ρc(T,B) in the same
Bi2212 crystals and the model of the Nernst signal sup-
port virtually any microscopic theory that describes the
state above the resistive and magnetic phase transi-
tion in superconducting cuprates as perfectly ’normal’
with F (r, r′) = 0. The carries could be normal-state
fermions, as in any BCS-like theory of cuprates, normal-
state charged bosons, as in the bipolaron theory [2], or a
mixture of both.
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