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How normal is the ”normal” state of superconducting cuprates?

V. N. Zavaritsky and A. S. Alexandrov
Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

High magnetic field studies of the cuprate superconductors revealed a non-BCS temperature
dependence of the upper critical field Hc2(T ) determined resistively by several groups. These de-
terminations caused some doubts on the grounds of the contrasting effect of the magnetic field on
the in-plane, ρab, and out-of-plane, ρc resistances reported for large sample of Bi2212. Here we
present careful measurements of both ρab(B) and ρc(B) of tiny Bi2212 crystals in magnetic fields
up to 50 Tesla. None of our measurements revealed a situation when on field increase ρc reaches
its maximum while ρab remains very small if not zero. The resistive Hc2(T ) estimated from ρab(B)
and ρc(B) are approximately the same. We also present a simple explanation of the unusual Nernst
signal in superconducting cuprates as a normal state phenomenon. Our results support any theory
of cuprates, which describes the state above the resistive phase transition as perfectly ’normal’ with
a zero off-diagonal order parameter.

PACS numbers: 74.40.+k, 72.15.Jf, 74.72.-h, 74.25.Fy

A pseudogap is believed to be responsible for the non
Fermi-liquid normal state of cuprate superconductors.
Various microscopic models of the pseudogap proposed
are mostly based on the strong electron correlations[1],
and/or on the strong electron-phonon interaction[2].
There is also a phenomenological scenario[3], where
the superconducting order parameter (the Bogoliubov-
Gor’kov anomalous average F (r, r′) = 〈ψ↓(r)ψ↑(r

′〉) does
not disappear at the resistive Tc but at much higher
(pseudogap) temperature T ∗. While the scenario [3] was
found to be inconsistent with the ‘intrinsic tunnelling’ I-
V characteristics, the discovery of the Joule heating ori-
gin of the gap-like I-V nonlinearities made the objection
irrelevant [4].

In line with this scenario several authors[5, 6] suggested
a radical revision of the magnetic phase diagram of the
cuprates with an upper critical field much higher than the
resistive Hc2(T )-line. In particular, Ref.[5] questioned
the resistive determination of Hc2(T ) [7, 8] claiming that
while ρc is a measure of the inter-plane tunnelling, only
the in-plane data may represent a true normal state. The
main argument in favour of this conclusion came from
the radically different field dependencies of ρc and ρab in
Fig.2 of Ref.[5], also shown in our Fig.1 (inset B). Ac-
cording to these findings, magnetic field sufficient to re-
cover normal state ρc, leaves in-plane superconductivity
virtually unaffected. The difference suggests that Bi2212
crystals do not loose their off-diagonal order in the Cu02

planes even well aboveHc2(T ) determined from the c-axis
data. This conclusion is based on one measurement so
that it certainly deserves experimental verification, which
was not possible until recently because of the lack of re-
liable ρab(B, T ) for Bi2212.

Quite similar conclusion followed from the thermomag-
netic studies of superconducting cuprates. A large Nernst
signal well above Tc has been attributed to a vortex mo-
tion in a number of cuprates [6, 9]. As a result the mag-
netic phase diagram of the cuprates has been revised with
the upper critical field Hc2(T ) curve not ending at Tc0

but at much higher temperatures [9]. Most surprisingly,

Ref.[9] estimated Hc2 at the zero-field transition temper-

ature of Bi2212, Tc0, as high as 50-150Tesla.

On the other hand, any phase fluctuation scenario such
as of Ref. [3] is difficult to reconcile with the extremely
sharp resistive and magnetic transitions at Tc in single
crystals of cuprates. Above Tc the uniform magnetic sus-
ceptibility is paramagnetic and the resistivity is perfectly
’normal’, showing only a few percent positive or negative
magnetoresistance (MR). Both in-plane [10, 11, 12] and
out-of-plane [7] resistive transitions remain sharp in the
magnetic field in high quality samples providing a reli-
able determination of a genuine Hc2(T ). These and some
other observations [13] do not support any superconduct-
ing order parameter above Tc.

Resolution of these issues, which affect fundamental
conclusions about the nature of superconductivity in
highly anisotropic layered cuprates, requires further care-
ful experiments and transparent interpretations. Here we
present systematic measurements of both in-plane and
out-of-plane MRs of small Bi2212 single crystals sub-
jected to magnetic fields, B ≤ 50 Tesla, B ⊥ (ab). Our
measurements reproduced neither the unusual field de-
pendence of ρab nor the contrasting effect of the field as
in Ref. [5], which are most probably an experimental
artefact. On the contrary, they show that the resistive
upper critical fields estimated from the in-plane and out-
of-plane data are nearly identical. We also present a sim-
ple explanation of the unusual Nernst signal in cuprates
as a normal state phenomenon, thus supporting any mi-
croscopic theory of cuprates with a zero off-diagonal or-
der parameter above resistive Tc.

Reliable measurements of the resistivity tensor require
defect-free samples. This is of prime importance for the
in-plane MR because even unit-cell scale defects will re-
sult in a significant out-of-plane contribution owing to
the extreme anisotropy of Bi2212. Because of this reason
much attention has been paid to the sample preparation
[14]. We studied ρc and ρab of the same high quality, opti-
mally and slightly underdoped Bi2212 crystals, Tc0 ≈87-
92K. Differently from Ref. [5] small crystals were pre-
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FIG. 1: ρc(B) and ρab(B) of Bi2212 normalised by cor-
responding ρN (0, T ) obtained with the linear extrapolation
from the normal state region (short dashes). The linear fits,
shown by long dashed lines, refer to the flux-flow region. In-
set A: Hc2 estimated from ρab(B) and ρc(B) is shown by
the open and solid symbols respectively together with the fit,
Hc2(T ) ∼ (t−1

− t1/2)3/2, with t = T/Tc [15] (dashed line).
Inset B shows ρc and ρab from the inset to Fig.2 in Ref.[5].

pared in order to reduce eddy currents and the forces
acting on the sample during the pulse. We measured ρc

on samples with in-plane dimensions from ≃ 30× 30µm2

to ≃ 80× 80µm2 while ρab was studied on a longer crys-
tals, from ≃ 300 × 11µm2 to ≃ 780 × 22µm2. Metallic
type of zero-field ρab(T ) and the sign of its normal state
MR [14] indicate vanishing out-of-plane contribution. All
samples selected for ρc and ρab measurements were cut
from the same parent crystals of 1− 3µm thickness. The
absence of hysteresis in the ρ(B) data obtained on the
rising and falling sides of the pulse and the consistency
of ρ(B) taken at the same temperature in pulses of differ-
ent Bmax exclude any measurable heating effects. Ohmic
response is confirmed by a consistency of the dc ρ(B)
measured at identical conditions with different currents,
10-1000A/cm2 for ρab and 0.1-20A/cm2 for ρc.

Fig.1 shows the typical ρc(B) and ρab(B) taken below
Tc0 of a Bi2212 single crystal. The low-field portions of
the curves correspond to the resistance driven by vortex
dynamics. Here a non-linear ρ(B) dependence is followed
by a regime, where a linear dependence fits the experi-
mental observations rather well, Fig.1. It is natural to
attribute the high field portions of the curves in Fig.1
(assumed to be above Hc2) to a normal state. Then, the
c-axis high-field MR appears to be negative and quasi-
linear in B in a wide temperature range both above and
below Tc0. Contrary to ρc(B), the normal state in-plane
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FIG. 2: Hc2(T ) obtained from independent resistance mea-
surements in Bi-2201 [17, 18]; broken lines correspond to the
data taken from ρc, solid lines from ρab.

MR is positive (see [14] and references therein for an ex-
planation). The reasonable concordance of Hc2(T ) esti-
mates from ρc(B) and ρab(B) (Inset A to Fig.1) favours
our association of the resistiveHc2 with the upper critical
field especially given the apparently different mechanisms
responsible for ρab and ρc [14].

Our conclusion is based on the results obtained during
few hundred measurements performed on three pairs of
crystals. None of those revealed a situation when on field
increase ρc reaches its maximum while ρab remains very
small if not zero as reported in Ref. [5] (see inset B in
Fig.1). Since the authors of Ref.[5] measured ′ρab(B)′ by
means of contacts situated on the same face of the crystal,
their curve could not represent the true ρab. Moreover,
neither the current redistribution (discussed in [16] for
homogeneous medium) nor imperfections of their huge
crystals were accounted for in Ref.[5].

The resistive upper critical field, which is about the
same from in- and out-of-plane data for Bi2212, shows a
non-BCS temperature dependence, Fig.1. These results
are supported by the independent studies of ρc and ρab in
a single-layer cuprate Bi2201 with the similar anisotropy.
If we apply the routine procedure for resistive Hc2(T )
evaluation [7], the very similar values of Hc2(T ) are ob-
tained from ρab and ρc measured on the same crystals
[17] and films [18] (see dashed and solid lines in Fig.2).
Remarkably, Hc2(T ) obtained are compatible with the
Bose-Einstein condensation field of preformed charged
bosons[15], and also with some other models [19, 20].

Finally we address the origin of the large Nernst volt-
age measured above Tc0 in superconducting cuprates (see
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[21] for more details). It is expressed in terms of the ki-
netic coefficients σij and αij as [22]

ey(T,B) ≡ −
Ey

∇xT
=
σxxαyx − σyxαxx

σ2
xx + σ2

xy

, (1)

where the current density per spin is given by ji =
σijEj + αij∇jT . Carriers in doped semiconductors and
disordered metals occupy states localised by disorder and
itinerant Bloch-like states. Both types of carriers con-
tribute to the transport properties, if the chemical poten-
tial µ (or the Fermi level) is close to the energy, where
the lowest itinerant state appears (i.e. to the mobility
edge). Superconducting cuprates are among such poor
conductors and their superconductivity appears as a re-
sult of doping, which inevitably creates disorder. Indeed,
there is strong experimental evidence for the coexistence
of itinerant and localised carriers in cuprates in a wide
range of doping [23].

When the chemical potential is near the mobility edge,
and the effective mass approximation is applied, there is
no Nernst signal from itinerant carriers alone, because
of a so-called Sondheimer cancellation [24]. However,
when the localised carriers contribute to the longitudi-
nal transport, σxx and αxx in Eq.(1) should be replaced
by σxx + σl and αxx + αl, respectively. Since the Hall
mobility of localised carriers is often much smaller than
their drift mobility [25], there is no need to add their
contributions to the transverse kinetic coefficients. One
can also neglect field orbital effects because the Hall an-
gle remains very small for the experimentally accessible
fields in poor conductors, ΘH ≪ 1 [6, 9], so that

ey(T,B) =
σlαyx − σyxαl

(σxx + σl)2
. (2)

The conductivity of itinerant carriers σxx in the supercon-

ducting cuprates dominates over that of localised carriers
[23], σxx ≫ σl, which simplifies Eq.(2) as

ey

ρ
=
kB

e
rθσl, (3)

where ρ = 1/[(2s+1)σxx] is the resistivity, s is the carrier
spin, and r is a constant,

r

2s+ 1
=

(

e|αl|

kBσl
+

∫∞

0
dEE(E − µ)∂f(E)/∂E

kBT
∫∞

0
dEE∂f(E)/∂E

)

(4)

Here N(E) is the density of states (DOS) near the band
edge (E = 0), and µ is taken with respect to the edge.
The ratio e|αl|/kBσl is a number of the order of one. For
example, e|αl|/kBσl≈2.4, if µ=0 and the conductivity
index ν=1 [26]. Calculating the integrals in Eq.(4) yields
r≈14.3 for fermions (s=1/2), and r≈2.4 for bosons (s=0)
with the two-dimensional DOS, N(E) =constant.

The Nernst signal, Eq.(3), is positive, and its maxi-
mum value emax

y ≈ (kB/e)rΘ is about 5 to 10 µV/K

with Θ = 10−2 and σl ≈ σxx, as observed [6, 9]. Actu-
ally, the magnetic and temperature dependencies of the
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FIG. 3: Eq.(6) fits the experimental signal (symbols) in

La1.8Sr0.2CuO4 [9] with b = 7.32(K/Tesla)1/3 . Inset shows
a(T ) obtained from the fit (dots) together with a∝T−6 (line).

unusual Nernst effect in cuprates are described by Eq.(3)
quantitatively, if σl obeys the Mott’s law,

σl = σ0 exp [−(T0/T )x] , (5)

where σ0 is about a constant. The exponent x depends
on the type of localised wavefunctions and variation of
DOS, Nl below the mobility edge [25, 27, 28]. In two
dimensions one has x = 1/3 and T0 ≈ 8α2/(kBNl), where
Nl is at the Fermi level.

In sufficiently strong magnetic field[29] the radius of
the ’impurity’ wave function α−1 is about the magnetic
length, α ≈ (eB)1/2. If the relaxation time of itinerant
carriers is due to the particle-particle collisions, the Hall
angle depends on temperature as ΘH ∝ 1/T 2, and the re-
sistivity is linear, since the density of itinerant carriers is
linear in temperature, both for fermionic and/or bosonic
carriers [30]. Hence, the model explains the temperature
dependence of the normal-state Hall angle and resistivity
in cuprates at sufficiently high temperatures. Then using
Eq.(3) and Eq.(5) the Nernst signal is given by

ey

Bρ
= a(T ) exp

[

−b(B/T )1/3

]

, (6)

where a(T ) ∝ T−2 and b = 2[e/(kBNl)]
1/3 is a con-

stant. The phonon drag effect should be taken into ac-
count at low temperatures in any realistic model. Then
a(T ) in Eq.(6) is found to be enhanced by this effect as
a(T ) ∝ T−6 [21]. The theoretical field dependence of
ey/(Bρ), Eq.(6), is in excellent quantitative agreement
with the experiment, as shown in Fig.3 for b = 7.32
(K/Tesla)1/3. The corresponding temperature depen-
dence of a(T ) follows closely T−6, inset to Fig.3. The
density of impurity states Nl = 8e/(b3kB) is about
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4 × 1013 cm−2(eV)−1, which corresponds to the number
of impurities Nim . 1021 cm−3, as it should be.

If carriers are fermions, then the product S tan ΘH of
the thermopower S and of the Hall angle should be larger
or of the same order as ey, because their ratio is pro-
portional to σxx/σl ≫ 1 in our model. Although it is
the case in many cuprates, a noticeable suppression of
S tanΘH , as compared with ey, was reported to occur
close to Tc in strongly underdoped LSCO and in a num-
ber of Bi2201 crystals [6, 9]. These observation could be
generally understood if we take into account that under-
doped cuprates are strongly correlated systems, so that a
substantial part of carriers is (most probably) preformed
bosonic pairs [2]. The second term in Eq.(4) vanishes
for (quasi)two dimensional itinerant bosons, because the
denominator diverges logarithmically if µ ≈ 0. Hence,
their contribution to the thermopower is logarithmically
suppressed. It can be almost cancelled by the oppo-
site sign contribution of the localised carriers, even if
σxx & σl. When it happens, the Nernst signal is given
by ey = ραxy, where αxy ∝ τ2. Differently from that of
fermions, the relaxation time of bosons is enhanced crit-

ically near the Bose-Einstein condensation temperature,
Tc(B), τ ∝ [T −Tc(B)]−1/2, as in atomic Bose-gases [31].
Providing S tan ΘH ≪ ey, this critical enhancement of
the relaxation time describes well the temperature de-
pendence of ey in Bi2201 and in strongly underdoped
LSCO close to Tc(B).

To conclude, we have shown that the understanding of
the reliable experimental data does not require radical
revision of the magnetic phase diagram of cuprates [32].
Our studies of ρab(B) and ρc(B) on the same Bi2212 crys-
tals as well as the normal state model of the Nernst signal
in cuprates support any microscopic theory, which de-
scribes the state above the resistive and magnetic phase
transition as perfectly ’normal’ with F (r, r′) = 0. The
carries could be normal-state fermions, as in any BCS-
like theory of cuprates, or normal-state charged bosons,
as in the bipolaron theory [2], or a mixture of both. We
believe that the resistive determinations provide the gen-
uine Hc2(T ), and the anomalous Nernst effect in high-Tc

cuprates is a normal state phenomenon.
This work was supported by the Leverhulme Trust

(grant F/00261/H).
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