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Nernst effect in poor conductors and in the cuprate superconductors

A. S. Alexandrov and V. N. Zavaritsky
Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

We calculate the Nernst signal in disordered conductors with the chemical potential near the
mobility edge. The Nernst effect originates from interference of itinerant and localised-carrier con-
tributions to the thermomagnetic transport. It reveals a strong temperature and magnetic field
dependence, which describes quantitatively the anomalous Nernst signal in high-Tc cuprates.

PACS numbers: 74.40.+k, 72.15.Jf, 74.72.-h, 74.25.Fy

Thermomagnetic effects appear in conductors sub-
jected to a longitudinal temperature gradient ∇T (in x
direction) and a perpendicular magnetic field B in z di-
rection. The transverse Nernst-Ettingshausen effect (fur-
ther the Nernst effect) is the appearance of a transverse
electric field Ey in the third direction. This effect as well
as the longitudinal one were discovered by Nernst and
Ettingshausen in a bismuth plate in 1886 [1]. The effect
is known to be small in ordinary metals. Indeed in the
framework of a single-band effective mass approximation
it appears only in the second order with respect to the
degeneracy kBT/EF ≪ 1 due to a so-called Sondheimer
cancellation [2], if the relaxation time τ(E) depends on
energy. If τ does not depend on energy, the Nernst signal
disappears even for nondegenerate carriers in the same
approximation [3].

Sufficiently large positive Nernst effect was found in
high-Tc cuprates in the vicinity of the resistive transition
temperature Tc [4]. As in conventional superconductors
it was attributed to motion of vortices down the ther-
mal gradient while a small negative signal, measured well
above Tc [5], was ascribed to the relaxation time decreas-
ing with carrier energy. Such a negative signal may also
originate from the counterflow of carriers with opposite
sign (the familiar ambipolar Nernst effect), as explained
by a simple two band model for electrons and holes with
different mobilities [6], and/or from a charged density
wave order [7], as observed in NbSe2.

Recently much attention has been paid to the anoma-
lously enhanced positive Nernst signal observed well

above Tc in La2−xSrxCuO4 (LSCO-x) in a wide range of
doping x [8]. It has been attributed to the vortex motion,
since the Sondheimer cancellation renders any ’normal
state’ scenario allegedly implausible [8]. As a result, the
magnetic phase diagram of the cuprates has been revised
with the upper critical field Hc2(T ) curve not ending at
Tc but at a much higher temperature [9, 10]. Most sur-
prisingly, Refs.[9, 10] estimated Hc2 at the superconduct-

ing transition temperature, Tc, as high as 40-150Tesla.
Wang et al. [9] argued that the large Nernst signal sup-
ports a scenario [11], where the superconducting order
parameter (i.e. the Bogoliubov- Gor’kov anomalous av-
erage F (r, r′) = 〈ψ↓(r)ψ↑(r

′〉) does not disappear at Tc

but at much higher (pseudogap) temperature T ∗. Several
other works [12] have also suggested that the anomalous
Nernst effect is a result of the fluctuations of the super-

conducting order parameter above Tc.
However, any phase fluctuation scenario is difficult to

reconcile with the extremely sharp resistive and magnetic
transitions at Tc in single crystals of cuprates. The uni-
form magnetic susceptibility at T > Tc is paramagnetic,
and the resistivity is perfectly ’normal’ showing only a
few percent positive or negative magnetoresistance. Both
in-plane [13, 14, 15, 16] and out-of-plane [17] resistive
transitions remain sharp in the magnetic field in high
quality samples providing a reliable determination of the
genuine Hc2(T ). The vortex entropy estimated from the
Nernst signal was found an order of magnitude smaller
than the difference between the entropy of the supercon-
ducting state and the extrapolated entropy of the normal
state obtained by specific heat measurements [18]. These
and some other observations [19] do not support any su-
perconducting order parameter above Tc.

In this Letter we calculate the Nernst signal for disor-
dered conductors with the chemical potential, µ, close to
the mobility edge. No ’Sondheimer cancellation’ of the
signal exists in this case. Mott’s law [20] for the variable-
range-hopping conduction of carriers localised below the
mobility edge together with the Boltzmann kinetics for
itinerant fermionic carriers or preformed bosonic pairs
above the edge yields the Nernst signal, which agrees
quantitatively with the signal in the superconducting
cuprates at temperatures, T > Tc(B) above the resistive
phase transition.

The Nernst voltage is expressed in terms of the kinetic
coefficients σij and αij as [3]

ey(T,B) ≡ − Ey

∇xT
=
σxxαyx − σyxαxx

σ2
xx + σ2

xy

, (1)

where the current density per spin is given by ji =
σijEj + αij∇jT . Carriers in doped semiconductors and
disordered metals occupy states localised by disorder and
itinerant Bloch-like states. Both types of carriers con-
tribute to the transport properties, if the chemical poten-
tial µ (or the Fermi level) is close to the energy, where
the lowest itinerant state appears (i.e. to the mobility
edge). Superconducting cuprates are among such poor
conductors and their superconductivity appears as a re-
sult of doping, which inevitably creates disorder. Dif-
ferently from 3D-conductors, the localised states cannot
be ’screened’ off by the itinerant carriers in these almost
two-dimensional conductors even at high density of car-
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riers. It is well known that in two dimensions a bound
state exists for any attraction, however weak. Indeed,
there is strong experimental evidence for the coexistence
of itinerant and localised carriers in cuprates in a wide
range of doping [21].

The standard Boltzmann equation in the relaxation
time approximation yields for itinerant carriers

σxx = −e2
∑

k

v2

xτ̃ (Ek)
∂f(Ek)

∂Ek

, (2)

σyx = −e3B
∑

k

v2
x

my
τ(Ek)τ̃ (Ek)

∂f(Ek)

∂Ek

, (3)

αxx = −e
∑

k

Ek − µ

T
v2

xτ̃ (Ek)
∂f(Ek)

∂Ek

, (4)

αyx = −e2B
∑

k

Ek − µ

T

v2

x

my
τ(Ek)τ̃ (Ek)

∂f(Ek)

∂Ek

, (5)

where v = ∇kEk is the group velocity, Ek is the band
dispersion, 1/mi = ∂2Ek/∂k

2

i is the inverse mass tensor,
which is assumed to be diagonal, ~ = c = 1, f(Ek) is the
equilibrium distribution function, and

τ̃ (Ek) =
τ(Ek)

1 + [eτ(Ek)B]2/(mxmy)
. (6)

Both αxx and αxy vanish at T = 0 for degenerate
fermions with any τ(Ek), if their band is parabolic, so
that 1/mi does not depend on k. When τ does not de-
pend on energy two terms in the numerator of ey, Eq.(1)
cancel each other at any temperature in the parabolic
approximation. However, a generalization of this Sond-
heimer cancellation for any band dispersion is flawed (see,
also Ref. [7, 22]). The most striking example is a half-
filled band. Modelling this band by the familiar tight-
binding dispersion, Ek = −2t[cos(kx) + cos(ky)] yields
1/mx,y = cos(kx,y)/m, where m=1/(2t), t is the nearest-
neighbour hopping integral, and µ=0 for the half-filling
(we take the lattice constant a = 1). Then by parity,
σyx = αxx = 0, but αyx is very large. Indeed calculating
integrals, Eq.(2) and Eq.(5) we obtain at kBT ≪ t

ey = − 2t

eTΘ

(

1 − 2Θ ln−1 1 + Θ

|1 − Θ|

)

, (7)

where Θ = eBτ/m. The Nernst signal is negative
and super-linear, ey ≈ −(2t/3eT )(Θ + 4Θ3/15) at small
Θ≪1 with the minimum at Θ=1. It changes sign in
a strong field, Θ>1, as shown in Fig.1 inset. In this
simple example the number of electrons in the lower
half of the band is equal to the number of holes in
the upper half. As a result we arrive to a substantial
negative Nernst voltage, Eq.(7), while both, the Hall ef-
fect, RH = −B−1σyx/(σ

2

xx + σ2

yx) and the thermopower,
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FIG. 1: The Nernst signal, ey, and S tan ΘH in Y Ba2Cu3O6.4

at B=1Tesla [10]. Inset: ey(B) in the half-filled band, Eq.(7).

S = −αxx/σxx, equal to zero at any temperature. Hence,
the Sondheimer cancellation is an exception, rather than
a rule. However, the thermomagnetic transport in the
half-filled band, Fig.1 inset, does not describe the exper-
imental results in cuprates. In particular, Eq.(7) yields a
wrong sign of ey ≈ −60 µV/K and the magnitude, which
is at least one order larger than observed with the typical
values of Θ = 10−2 and kBT/t = 10−2 [4, 8, 9, 10, 18].
Moreover, in disagreement with the half-filled band re-
sult, the Sondheimer cancellation, S tan ΘH ≫ ey, holds
in a wide temperature range, as shown in Fig.1 for
Y Ba2Cu3O6.4. Here S tan ΘH = σyxαxx/(σ

2
xx + σ2

xy)
represents the second term in Eq.(1); S and the Hall an-
gle, ΘH ≈ tanΘH = BRH/ρ, were measured indepen-
dently. As it is clearly seen from Fig.1, ey and S tan ΘH

are of the same order at sufficiently low temperatures,
also in disagreement with the half-filled band results.
Very similar trends of ey and S tan ΘH were obtained for
overdoped LSCO-02 using independent measurements of
S, ρ, and RH [23], in particular, ey and S tanΘH are of
the same order near Tc.

To account for these findings more realistic model is re-
quired. When the chemical potential is near the mobility
edge, the effective mass approximation can be applied.
In this case, there is no Nernst signal from itinerant car-
riers alone, if τ is a constant. However, now the localised
carriers contribute to the longitudinal transport, so that
σxx and αxx in Eq.(1) should be replaced by σxx + σl

and αxx + αl, respectively. Since the Hall mobility of
localised carriers is often much smaller than their drift
mobility [20], there is no need to add their contributions
to the transverse kinetic coefficients. Neglecting the or-
bital effects(Θ ≪ 1 [8, 9, 10]) one obtains

ey(T,B) =
σlαyx − σyxαl

(σxx + σl)2
. (8)
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When the chemical potential lies near the bottom of the
band (µ ≈ −4t), αyx, Eq.(5), and σyx, Eq.(3), are posi-
tive, but the thermopower of localised electrons with the
energy below µ is negative, αl < 0. Hence, there is no
further ’cancellation’ in the numerator of Eq.(8) in this
electron-doping regime. When the chemical potential is
near the top of the band (µ ≈ 4t), αyx remains positive,
but σyx is negative and αl is positive, so that there is no
cancellation in the hole-doping regime either. In the su-

perconducting cuprates the conductivity of itinerant car-
riers σxx dominates over the conductivity σl of localised
carriers [21], σxx ≫ σl, which allows us to simplify Eq.(8)
as

ey

ρ
=
kB

e
rθσl, (9)

where ρ = 1/[(2s+1)σxx] is the resistivity, s is the carrier
spin, and r is a constant,

r

2s+ 1
=

(

e|αl|
kBσl

+

∫∞

0
dEE(E − µ)∂f(E)/∂E

kBT
∫∞

0
dEE∂f(E)/∂E

)

(10)

Here N(E) is the density of states (DOS) near the band
edge (E = 0), and µ is now taken with respect to the
edge. The ratio e|αl|/kBσl is a number of the order of
one. For example, e|αl|/kBσl ≈ 2.4, if µ = 0 and the
conductivity index ν = 1 [24]. Calculating the integrals
in Eq.(10) yields r ≈ 14.3 for fermions (s = 1/2), and
r ≈ 2.4 for bosons (s = 0).

The Nernst signal, Eq.(9), is positive, and its maxi-
mum value emax

y ≈ (kB/e)rΘ is about 5–10 µV/K with

Θ = 10−2 and σl ≈ σxx, as observed [8, 18]. Actually, the
magnetic and temperature dependencies of the unusual
Nernst effect in the overdoped LSCO are quantitatively
described by Eq.(9), if σl obeys the Mott’s law,

σl = σ0 exp [−(T0/T )x] , (11)

where σ0 is about a constant. The exponent x depends
on the type of localised wavefunctions and variation of
DOS, Nl below the mobility edge [20, 25, 26]. In two
dimensions one has x = 1/3 and T0 ≈ 8α2/(kBNl), where
Nl is at the Fermi level [27].

If the magnetic field is strong enough [28], the radius of
the ’impurity’ wave function α−1 is about the magnetic
length, α≈

√
eB. If the relaxation time of itinerant carri-

ers is due to the particle-particle collisions, the Hall angle
depends on temperature as Θ∝T−2, and the resistivity is
linear, ρ∝T since the density of itinerant carriers is linear
in temperature, both for fermionic [29] or bosonic (e.g.
bipolaronic) carriers [30]. Hence, the model explains the
temperature dependence of the normal-state Hall angle
and resistivity in cuprates at high temperatures. Finally,
using Eq.(9) and Eq.(11) the Nernst signal is given by

ey

Bρ
= a(T ) exp

[

−b(B/T )1/3

]

, (12)

where a(T ) ∝ T−2 and b = 2[e/(kBNl)]
1/3 is a con-

stant. Evidently, the phonon drag effect should be taken

0

1

2

0 10 20 30

20K

6K

26K

B (T)

e y/(ρ
B

) 
(a

rb
.u

ni
ts

)

101

102

103

104

10 20 T,K

a(T)

FIG. 2: Eq.(12) fits the experimental signal (symbols) in

LSCO-02 [8] with b = 7.32 (K/Tesla)1/3. Inset shows a(T )
obtained from the fit (dots) together with a ∝ T

−6 (line).

into account at sufficiently low temperatures in any re-
alistic model. One can account for this effect by re-
placing Ek in Eq.(4) and Eq.(5) by Ek +mv2

sτph/τe−ph

[3]. Here vs is the sound velocity, τph ∝ T−4 is the
phonon relaxation time due to the phonon-phonon scat-
tering, and τe−ph is the electron (hole) relaxation time
caused by electron-phonon collisions. In two dimensions
τe−ph ∝ T−1 [31], so that a(T ) in Eq.(12) is enhanced
by the drag effect as a(T ) ∝ T−6. The theoretical field
dependence of ey/(Bρ), Eq.(12), is in excellent quanti-
tative agreement with the experiment, as shown in Fig.2
for b = 7.32 (K/Tesla)1/3. The corresponding temper-
ature dependence of a(T ) follows closely T−6, inset to
Fig.2. The density of impurity states Nl = 8e/(b3kB) is
about 0.4 × 1014 cm−2(eV)−1, which corresponds to the
number of impurities Nim . 1021 cm−3, as it should be.

In agreement with the experiment [8, 9, 10], our
model of thermal magnetotransport predicts anomalous
Nernst signal in cuprates only within the doping interval,
where superconductivity is observed. Since the chemi-
cal potential is well below the mobility edge in the non-
superconducting underdoped cuprates [21], and it is deep
inside the Bloch band in heavily doped samples, there is
no ’interference’ of itinerant and localised-carrier contri-
butions in these extreme regimes. If carriers are fermions,
then S tan ΘH should be larger or of the same order as
ey, because their ratio is proportional to σxx/σl ≫ 1 in
our model. Although it is the case in many cuprates
(eg., Fig.1, and the text below), a noticeable suppression
of S tan ΘH , as compared with ey, was reported to occur
close to Tc in strongly underdoped LSCO and in a num-
ber of Bi2201 crystals [8]. These observations could be
generally understood if we take into account that un-
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derdoped cuprates are strongly correlated systems, so
that a substantial part of carriers is (most probably) pre-
formed bosonic pairs [32]. The second term in Eq.(10)
vanishes for (quasi)two dimensional itinerant bosons, be-
cause the denominator diverges logarithmically. Hence,
their contribution to the thermopower is logarithmically
suppressed. It can be almost cancelled by the oppo-
site sign contribution of the localised carriers, even if
σxx ≫ σl. When it happens, the Nernst signal is given by
ey = ραxy, where αxy ∝ τ2, Eq.(5). Differently from that
of fermions, the relaxation time of bosons is enhanced
critically near the Bose-Einstein condensation tempera-
ture, Tc(B), τ ∝ [T−Tc(B)]−1/2, as in atomic Bose-gases
[33]. Providing S tan ΘH ≪ ey, this critical enhancement
of the relaxation time describes well the temperature de-
pendence of ey in Bi2201 and in strongly underdoped
LSCO close to Tc(B). If some segments of a large Fermi-
surface survive in underdoped cuprates, the Bose liquid
of preformed pairs coexists with the fermionic carriers.
The degenerate fermions virtually do not contribute to
the thermal transport, but they dominate the longitu-
dinal and transverse electric transport. Hence, the Hall

coefficient and resistivity data could not present a behav-
ior correlated with that of the Nernst signal.

In conclusion, we calculated the Nernst signal in dis-
ordered conductors with the chemical potential near the
mobility edge, and found no ’Sondheimer cancellation’
of the signal. ’Sondheimer cancellation’ is also absent in
the half-filled band, where the Hall effect and the ther-
mopower are zero, but the Nernst signal is large and neg-
ative. In contrast with the half-filled band, the model
with itinerant and localised fermions and/or charged
bosons describe quantitatively the anomalous Nernst ef-
fect in high-Tc cuprates as a normal state phenomenon
above the resistive phase transition. Our results strongly
support any microscopic theory of cuprates, which de-
scribes the state above the resistive and magnetic phase
transition as perfectly ’normal’, F (r, r′) = 0. Differently
from [9, 10] the present model does not require a radical
revision of the magnetic phase diagram of cuprates [34].

This work was supported by the Leverhulme Trust
(grant F/00261/H). We would like to thank W. Y. Liang
and K. K. Lee for helpful discussions.
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