38 research outputs found

    A computational model for three-dimensional incompressible wall jets with large cross flow

    Get PDF
    A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed

    A consistent design procedure for supercritical airfoils in free air and a wind tunnel

    Get PDF
    A computational inverse procedure for transonic airfoils in which shapes are determined supporting prescribed pressure distributions is presented. The method uses the small disturbance equation and a consistent analysis-design differencing procedure at the airfoil surface. This avoids the intermediate analysis-design-analysis iterations. The effect of any openness at the trailing edge is taken onto account by adding an effective source term in the far field. The final results from a systematic expansion procedure which models the far field for solid, ideal slotted, and free jet tunnel walls are presented along with some design results for the associated boundary conditions and those for a free flight

    Experiments on Passive Hypervelocity Boundary-Layer Control Using an Ultrasonically Absorptive Surface

    Get PDF
    Recently performed linear stability analyses suggested that transition could be delayed in hypersonic boundary layers by using an ultrasonically absorptive surface to damp the second mode (Mack mode). Boundary-layer transition experiments were performed on a sharp 5.06-deg half-angle round cone at zero angle of attack in the T5 Hypervelocity Shock Tunnel to test this concept. The cone was constructed with a smooth surface around half the cone circumference (to serve as a control) and an acoustically absorptive porous surface on the other half. Test gases investigated included nitrogen and carbon dioxide at M∞ ≃ 5 with specific reservoir enthalpy ranging from 1.3 to 13.0 MJ/kg and reservoir pressure ranging from 9.0 to 50.0 MPa. Comparisons were performed to ensure that previous results obtained in similar experiments (on a regular smooth surface) were reproduced, and the results were extended to examine the effects of the porous surface. These experiments indicated that the porous surface was highly effective in delaying transition provided that the pore size was significantly smaller than the viscous length scale

    Hypersonic flow over a delta wing of moderate aspect ratio.

    No full text

    An asymptotic theory of wind-tunnel-wall interference on subsonic slender bodies

    No full text

    Note on the solution of the force of slender delta wings.

    No full text
    corecore