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SUMMARY

A computational inverse procedure for transoni: airfoils in which shapes
are determined supporting prescribed pressure disicibutions is presented.
The method uses the small disturbance equation and a consistent analysis-
design differencing procedure at the airfoil surface. This avoids the
intermediate analysis-design-analysis iterations. The effect of any openness
at the trailing edge is taken into account by adding an effective source term
in the far field. The final results from a systematic expansion procedure
which models the far field for solid, ideal slotted and free jet tunmel walls
are presented along with some design results for the associated boundary
conditions and those for a free flight.

INTRODUCTION

Computational design or inverse procedures for transonic airfoils in
which shapes are determined supporting prescribed pressure distributions have
been in use since the early work of Nieuwlandl** which employed hodograph
methods to calculate shock-free supercritical flow about a family of quasi-
elliptical airfoils. Later Garabedian and Korn? developed a more general
hodograph procedure to design highly cambered shock-free airfoils. In spite
of their usefulness, hodograph procedures for design purposes have several
disadvantages. They require too many input parameters, are restricted to
shock-free solutions, and are not easily extendable to design of three-dimen-
sional wings. Steger and Klineber33 treated the problem within a small-
disturbance framework solving the continuity and vorticity equation at
interior points. To insure consistency between the analysis and the design
formulation, they applied appropriate discretization procedures to the
vorticity equation at the airfoil grid points., However, the first-order
system with velocity components as dependent variables produces a difficulty
in the treatment of singularities at the airfoil nose and trailing edge. The
effect of nose and trailing edge singularities could be greatly reduced by
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using a scalar formulation involving the velocity potential. Tranen# employed
the full potential equation to remedy the deficiency inherent in the small
disturbance formulation at the leading and trailing edges. To overcome the
inaccuracies and inconsistencies in his formulation associated with the
discretization procedures at the boundary, iterations must be employed between
direct and inverse solvers. Also, in the full potential formulation, boundary
conditions are to be applied at the exact airfoil surface. Since the airfoil
surface 1s unknown in the design problem, errors pPropagate due to application
of boundary conditions at some assumed airfoil surface. Carlson® used ghost
point and higher order accurate methods to handle airfoil boundary points.,
Rather than employing the circle plane as in Tranen's procedure, Carlson used
a Cartesian framework. However, even his procedure is not consistent in the
sense that the discretizations used for C. in the analysis and those in the
design phase are not of the same form, Tge former uses a central differenced
¢y for Cp calculations while the latter employs a special backward differenced
¢x 1nvolving ghost points. As a result, perfect agreement between his analysis
and design calculations is not to be expected, especially near the shock.
Also, the problems associat>d with open trailing edges are not addressed in
his work. The trailing edge is made to close by altering the nose shape.
However, in his intermediate calculations, large cpen trailing edges occur,
The final results are questionable since the effect of openness is not
included in the far field for the intermediate solutions.

In this paper, a small~-disturbance model employing the velocity potential
as the dependent variable is used for the implementation of the design
algorithm. This procedure simplifies the treatment of boundary conditions
and alleviates the need for mappings that arise in a full potential equation
formulation. A mixed boundary value problem is solved in which Neumann data
are specified in the first few percent of the chord length where the assumed
shape is retained, and Dirichlet conditions are prescribed on the rest of the
airfoil where the pressure is to be modified, One important thrust of the
present work is in developing a consistent discretization procedure for the
airfoil grid points, If the converged C, output from the analysis is not
altered, then the design mode recovers tge same airfoil shape without any
discontinuity in the airfoil slope at the shock wave, overcoming a deficiency
in Carlson's work. Another significant feature of the numericai implementa-
tion not considered by the previous investigators is the effect of an op:2n
trailing edge in the far field, In the present work, this is accounted for
with the addition of the necessary source terms in the far field. Design of
thick trailing edge airfoils is of interest in inviscid flow to achieve a
reasonable trailing edge thickness after accounting for the viscous disnlace-
ment thickness., Some amount of trailing edge thickness 1s required from a
structural stability point of view. Figure 1 schematically explains the
design philosophy followed in this paper. The top of Figure 1 shows a conven-
tional airfoil at transonic speed producing a shock on the upper surface.
Specifying a shockless pressure distribution on the upper surface would
flatten the upper surface of the conventional airfoil, thereby producing an
openness at the trailing edge., This is shown in the middle of Figure 1., The
amount of trailing edge openness can be reduced by specifying a lower surface
pressure distribution with a large aft end loading., This kind of loading
undercuts the lower surface producing a Whitcomb® type supercritical airfoil,
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A typical supercritical airfoil design is presented in the Results section.
The effects of wind tunnel walls in the computation of transonic airfoil
esign and analysis have also been studied. The downstream and upstream
infinity conditions for the solid, ideal slotted, and free jet tunnel walls
have been derived from a systematic asymptotic solution of the small-distur-
bance integrodifferential equation.

(-1

SYMBOLS
scaled mass flux vector
chord
lift coefficient
section normal-force coefficient

pressure coefficient at half node points

upper and lower airfoil slopes
scaled half tunnel wall height
transonic similarity parameter
Mach number

free ctream Mach number
effective source strength due to airfoil trailing edge openness
coordinate system

upper and lower airfoil ordinates
velocity potential

far field velocity potential
angle of attack

maximum airfoil thickness

specific heat ratio
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EQUATION AND BOUNDARY CONDITIONS

The transonic small disturbance equations are formally derived by an
asymptotic expansion procedure7 applied to the Euler equations. For an
airfoil whose upper and lower surfaces are defined by Yu,2 = 6Fu’£(x)-ax the
perturbation potential satisfies the equation

[K - (Y+1)¢x]¢xx + ¢9y =0 (1)

The large lateral propagation of transonic disturbances is taken into account
by the use of the scaled coordinate § = yal/ /3, The limit process is
6§+0,M -+1, while x,y, and K = (l-Mg)/(MQG2 ) remain fixed. The quantity
a is the angle of attack.

Consistent with the small disturbance formulation, the airfoil boundary
conditions are applied on a slit of § = 0. In the case of pure analysis the
airfoil boundary condition (flow tangency) is of Neumann type.

(x) - 3 -1 x €1 (2)

]
¢9(x901) = FU 3

'L

The airfoil leading and trailing edges are at x = -1 and x = 1 respectively.

In the design problem, the airfoil shape corresponding to a given pressure
distribution is sought, However, the small disturbance theory cannot resolve
the nose region accurately. Therefore, the nose shape of an existing airfoil
is specified for up to 5-10% of the chord length and a desired pressure distri-
bution over the rest of the chord is prescribed. The boundary conditions then
become a mixed Neumann-Dirichlet type. On the portion of the airfoil where

the nose shape is specified, the boundary condition applied is given by

Eq. (2). Over the rest of the airfoil a scaled pressure coefficient

2/3

c, = -2 (62733/4) 4, (x,08) (3)

1s prescribed. With ¢4(x,0t) known from Eq. (3), the perturbation potential
¢(x,0t) is calculated by integration. This value of ¢(x,0%) is then imposed
at the airfoil slit as a Dirichlet type boundary condition. Figure 2
schematically illustrates the mixed Neumann-Dirichlet type boundary condition.

FAR FIELD
To avoid mapping procedures which bring infinity to a finite distance from
the airfoil, but compromise the difference method, an approximate asymptotic

solution for ¢ valid at large distances from the airfoil is used as far field
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boundary condition. The type of far field depends on whether the airfoil is
kept in free ailr or a solid, slotted or porous wall wind tunnel, The far
field expressions to be used in this paper will now be discussed.

Free Air

Figure 2 shows the far field arrangement. Along the outer boundary ABCDE,
the perturbation potential ¢ is computed from

- _ I8 _ Qlogi
’FF 2% + 27 REE (4)

where I' is the circulation around the airfoil, 0 = tan-l(¢§§7k), Q is an
effe rce strength due to any openness at the trailing edge, and
r = yx° + k¥“. Only dominant terms are kept in Eq. (4).

An expression for the source strength Q is obtained by considering the

integral form of Eq. (1), The divergence theorem is used to obtain this
integral relation in the cut region R shown in Figure 3

[f voBda = ﬁ B.nds (5)
R C1+C2 .

+ +
where B = (K¢, - Slill ¢£) T+ ¢§§ is a scaled mass flux vector. Since B is

is coaserved across shock waves, no special boundary terms appear if shocks are
present in the flow. Expanding Eq. (5) results in

1
- _oy+1) 2
_[1 [Oyldx = /(;l (K¢x —-7—2—— ¢x)d9 - #ydx (6)

Substituting Eq. (4) into Eq. (6) and simplifying gives

1
Q= %712-/-; [¢51dx, where [ ] denotes jump (7)
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1
If the airfoil trailing edge is closed, then f[‘b?] dx 18 zero and no source

term is present. While designing an airfoil to support a given pressure
distribution the magnitude of the trailing edge openness is not known a priori.
In the calculation, Q is therefore evaluated by nonlinear iteration procedure
analogous to that employed in obtaining the circulation term ' for an analysis
problem. If there is trailing edge openness, and if the source term is not
included in the far field, then the solution obtained may be questionable.

Wind Tunnel

To establish the appropriate boundary conditions on a finite computa-
tional domain for a tunnel simulation, the far field corresponding to
X + t= has been derived using a Green's function method. Only the final
results to the dominant order for the solid, ideal slotted and free jet tunnel
wall cases are reported here. The airfoil is positioned midway between the
walls. Thus, the airfoil slit is at §¥ = 0 and the tunnel boundaries are at
¥ = tH. The appropriate boundary conditions on the tunnel walls are

¢7 (x,tH) = 0 for solid wall
(8)
¢, (x,tH) = %ﬁ ¢ (x,tH) = 0 for slotted
v and free jet
where F is the slot parameter:
= 3_ -a
F=— fn cosec(zs) (9)

where s is the distance between slot centers and a is the slot width, For
free jet case F = 0,

To dominant order in the Karman-Guderley (x,¥) plane,the far fields
corresponding to these tunnel cases at x + te are:

Solid wall:

1
4ho = :x'”z%cm(x-l) + f a(&)da}
-1

§ a0 2 ~A |x|) 10)
TSNS -MI%L]"E + wrcsmprce + ole 1) ¢
Ky Jo 16h
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where t(1) = Fu(l) - Fz(l), §,n are dummy variables for x and y, h = /K H,
H(x) =1 for x > 0 and H(x) = 0 for x < 0, and u = ¢x.

Slotted and free-jet wall;
¢+ 0 as x + -o

(11)
¢ >

N =3
w
8
<
1
!
o
=] 2
+
o
®
L]
+
¥

Eqs. (11) assume no downwash at upstream infinity. Other expressions can be
derived for different upstream assumptions. In this connection, the drag,
lift, and pressure distribution can be shown to be unaffected by addition of
upstream down flow.

CONSISTENCY

When the pressure distribution from the analysis calculation is used as
an input for design, a consistent discretization procedure would recover the
airfoil shape exactly, even across the shock. To achieve this agreement,
dummy points below the airfoil surface are used. Figure 4 shows the grid
points near the airfoll surface. The points (i, j-1) are the dummy points.

Analysis

From the known airfoil shape (¢§)i’j,at the beginning of each relaxa-

tion cycle the dummy point values ¢i,j-1 are obtained from the central
difference formula

%,9-1 " 4,50 - 20O, (12)
This expression is then used in the finite differenced form of ¢, in
Eq. (1) at the airfoil points 1,1 ¥y
2¢ - 2¢ 2(¢.)
[(x - (,,,Wx)%x]1 * __u%;_z_m - —Flud (13)
’ y
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The nonlinear term in Eq. (13) is central differenced at elliptic points and
one-sided backward differenced gt hyperbolic points. To improve stability
near the sonic region Jameson's® pseudo-time operator is used in the relaxa-
tion procedure. Once the analysis procedure converges, the pressure
distribution on the airfoil is computed at half node points

262/3
c - - ¢
pli-1/2,:l @74 xli-l/Z,j (14)
where
¢xli-1/2,3 = (¢igj - ¢i-l)j)/(xi,j - xi_l’j) (15)
Design

As mentioned earlier in this paper, a portion of the airfoil shape
(¢3) near the nose is specified (from x = -1 to x = XD in Figure 2). On the

portion of the airfoil under design, the pressure coefficient Cpi 172, is
- ’

specified at half node points. From Cp1“1/2 3’ the perturbation potential 1,5
on the 2irfoil surface iz obtained from Eqé. (14) and (15)

3/4
¢ - ¢ - ._Mb.i— c (xi j - xi_l j) (16)
i,3 i-1,] 252/3 pi—l/Z,j s s ‘

At the airfoil grid points where the shape ¢§ is specified, Eq. (13) is used

to evaluate the potential ¢i,j (usual SLOR scheme). Since this potential
keeps changing during the relaxation cycle, the potential ¢i,j over the

designed portion is updated accordingly at the beginning of each relaxation
cycle using Eq. (16). After the mixed analysis-design solution converges, the
slope (¢§)i,j of the resulting airfoil is computed from Eq. (13) as

AY 1
5], =5 [[x- (Y+l)°x)¢xx]1 T8 @,y ()
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From the slope ¢§, the airfoil ordinates are calculated from the quadrature
formula

> 9
T, 000 = 7 4 (x) + 8 4 Gl t 8 g
xD‘< xS1

where yu’z(XD) are the upper and lower y values of the airfoil at X = XD,
where the boundary condition changes from analysis to design. Since Egs.

13 14), and (15) are used in the same manner in the analysis and desi n,
the discretization procedure is consistent.

RESULTS

To check the consistency logic developed in the previous section, a test
case was run. An analysis calculation for the NACA 0012 airfoil at M, = 0.75,
o = 2° was first performed. The pressure distribution from the analysis
calculation was then used as an input for the design problem to check if the
NACA 0012 airfoil shape would be recovered even across the shock. The results
are shown in Table 1. The upper (y,) and lower (yg) surface ordinates from
the design calculation agreed with the original NACA 0012 airfoil up to four
significant figures, thus establishing consistency of the method.

Figure 5 shows a design calculation performed on the previous NACA 00).2
analysis solution to get rid of the upper surface shock. The dotted line
shows the analysis solution, and the solid line shows the prescribed shockless
pressure distribution. The resulting airfoil is shown by the solid line. It
is seen that a slight flattening of the upper surface determined in the design
phase eliminates the shock. This reshaping produces an openness at the trail-
ing edge which was properly accounted for by the effective source term in the
far field.

Analysis calculations were performed over the shock-free airfoii designed
in free air, (shown in Figure 5), using solid wall tunnel boundary conditions.
The airfoil tist produces a shockless pressure distribution in free air may
produce a shock when tested in the wind tunnel. This is illustrated by the
results shown in Figure 6. From the figure, it 1s evident that when the
tunnel wall is sufficiently far away from the airfoil, the pressure distribu-
tion remains shockless. As the tunnel wall is brought closer to the airfoil,
the shock appears and moves downstream.
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Figure 7 shows a supercritical airfoil design with NACA 0012 nose shape.
First, an analysis solution was generated over the NACA 0012 airfoil at
Mo = 0.8 and o = 2°. This is shown by the dotted line in Figure 7. Then a
supercritical pressure distribution was specified with a large loading on the
aft end of the airfoil. The resulting airfoil resembles a Whitcomb type super-
critical airfoil which is characterized by a substantially reduced curvature
on the mid chord region of the upper surface together with increased camber
near the trailing edge.

An off design calculation or this supercritical airfoil at M, = 0.78
is shown in Figure 8. For qualitative comparison, off design and design
calculations on the NASA 11% thick supercritical airfoil are also shown. At
off design Mach numbers the shock reappears.

The effect of wind tunnel walls on the performance of the free air
shock free supercritical airfoil is shown in Figure 9. Only the upper surface
pressure is shown for solid, ideal slotted (F = 0.279) and free jet (F = 0)
tunnel cases. The solid line in Figure 9 refers to the shock free, free air
pressure distribution. For tunnel wall height to a chord ratio of 6, the shock
reappears in all the tunnel wall cases. As expected, the solid wall produces
a stronger shock while the free jet case produces a weaker one.

CONCLUDING REMARKS

An efficient and inexpensive design-analysis code has been developed for
two-dimensional airfoils. The consistent differencing procedure employed at
the airfoil boundary allows use of the same code in either analysis or design-
analysis mode without requiring any modification. In the algorithm, the
effect of an open trailing edge is properly accounted for, a factor ignored
by other workers. The fact that no mapping is invclved in the two-dimensicnal
work makes the extension of the algorithm to three dimensional wing design
feasible and attractive.
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TABLE 1.- CONSISTENCY CHECK
Mg 075 a - 20

C

TR s v -t gy oo

xIC y Analysis p y Design
Upper Lower Upper Lower Upper Lower
. 045 3.47139 | -3.4713 | -. 737143 L 24451 | 3.47139 | -3 47139
. 075 4.27675 | -4.2767 | -. 88529 | - 00489 | 4.27675 | -4 27675
. 265625 | 6.05798 | -6.0579 | -1 1407 ~.3006 | 6.05801 | -6 05799
.39 5.9235 | -5.9223 | -1 1547 | - 26837 | 5.92242 | -5.92238
453125 | 5. 65088 -5.6508 | -.46496 | - 23615 | 5, 65097 | -5. 65091
. 546875 | 5.06204 | -5.0620 | -.37826 - 18103 | 5.06215 | -5, 06207
. 765625 | 3.08328 | -3 0832 | -.14389 - 03554 | 3.08347 | -3, 08335
. 96 76099 | -. 7609 18687 | 22115 | 76102 | -0 76101
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Figure 7.- Supercritical-airfoil design with NACA 0012 nose shape.

M = 0.8;

[- 3

NEAR-DESIGN PRESSURE
DISTRIBUTION ON 11%-THICK NASA
SUPERCRITICAL AIRFOIL

Me0,80: p *0.61

L N B AR I
-8} .
-4 - = £ Cp. sonic
%
0 :
4 \\J
I |
52 & 6 8 10
xic

OFF-DESIGN PRESSURE
DISTRIBUTION ON 11%-THICK NASA
SUPERCRITICAL AIKFOIL
Me0.78; ¢, *0.58

o B B
_cP.sonir.
-4 —
[
i’ 0
A \\j
A | | I
0 .2 .4 6 .8 10

a = 2°,

DESIGN SHOCKLESS SUPERCRITICAL
PRESSUKE DISTRIBUTION

M08 o € +0562

OFF-DESIGN PKESSURE
DISTKIBUTION
C ».5%2

M 078, a2,

Figure 8.- Off-design pressure distribution.

L

T I T YT T ST



%}
|

Rk ka6 '

. I
fo e e e
©
G
PRINRCP L —— FREE AIR
R g, @
R 500 ===~ SOLID WALL
of === |DEAL SLOTTED
ssssses FREE JET
-2 -

6
o T——
Q =l

-6

.5 1.0
x/C

Figure 9.- Performance of a free-flight shock-
wind tunnel, M = 0.8; o

[eo]

free airfoil in a
= 2° H/C = 6.

17

N



