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SUMMARY

The flow field of three-dlmenslonal incompressible wall Jets

prototypic of thrust augmenting ejectors with large cross flow is

solved using a very efficient centered-Euler scheme in an orthogonal

curvillnear coordinate system. The computational model treats initial

conditions with arbitrary velocity profiles at the jet exit. An

averaging approach is employed for the first few marching steps to

overcome spurious numerical oscillations associated with arbitrary

initial profiles. Laminar as well as turbulent wall jets are simulated.

Turbulence is introduced using a two layer mixing length model appropriate

to curved three-dimensional wall jets. Typical results quantifying

jet spreading, Jet growth, nominal separation and jet shrink effects

due to cross flow are presented.

*This work was sponsored by the Naval Air Development Center under

Contract N62269-77-C-0412. The monitor for this effort was

Dr. Kenneth Green.
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INTRODUCTION

Modern naval aircraft can reduce strike force vulnerability by

the attainment of vertical llft-off capability. To achieve accelerations

associated with typical payloads, a high augmentation ratio _ is

required. Various propulsive lift concepts have been advanced toward

obtaining this goal. In the XFV-12A, an ejector system composed of

a centerbody and two Coanda wall Jets is currently under development.

A central feature of the flow fields produced by this device is three

dlmenslonality. This has been particularly evident in subscale flow

visualization on the Coanda surfaces. It is believed that these flow

processes may be important toward # maximization. One way of understanding

this relationship is through theoretical modeling which can provide a

means of reducing the high cost of powered lift testing. Unfortunately,

existing methodology has been limited in the past to two-dimensional

flows for the analysis of wall Jets and complete ejector systems.

Analytical methods and computational algorithms are therefore necessary

to compute three-dimensional flows typical of reality.

To shed light on typical flow patterns encountered, due to the

effect of taper and sweep on augmenter wings as well as upper-surface-

blown configurations, a study, "Three-Dimenslonal Flow of a Wail Jet,"

was initiated by the Naval Air Development Center to investigate wall

Jet flows which exemplify typical features of more complex propulsive

llft applications. The purpose of this study has been to apply modern

computational methods to the treatment of wall Jet flows with three

dimenslonallty.

The formulation employs boundary-layer equations in an orthogonal

curvilinear coordinate system. It can be shown from a systematic

order of magnitude analysis that the boundary-layer equations also

apply for wall Jets, providing the distance from the Jet exit is

suff_clently large to establish complete mixing, the Jet height is small

compared to a characteristic radius of curvature, and the Reynolds

number based on the exit height is large. A transformation is incorporated
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to stretch the coordinate normal to the flow. At streamwise planes,

the resulting nonlinear partial differential equations are treated as

ordinary differential equations. These are solved using a very efficient

two-point boundary value finite-difference method devised by Keller

and Cebeci I-3 known as "box method." The turbulence is introduced using

a two-layer mixing length model appropriate to three-dimensional wall

Jets.

Equations in Curvilinear System

The governing equations for three-dimensional incompressible flows

over a wall Jet in a curvilinear orthogonal coordinate system shown in

Figure i are given by the following equations:

Continuit_

(_/_X) (h2u) + (_/_z)(hlw) + (_/_y)(hlh2v) = 0
(I)

x-Momentum

u ___V_u+ w _u + v uwKl + w2K2 : - -- _x _y -
h I _x h_ $--z _y- oh I

(2)

z-Momentum

u Sw w _w _w

h_ _-x + h_ _-_ + v _y - uwK 2 + u2K1 = - Ph-_ _z _ - w'v'

Here h I and h 2 are metric coefficients and are functions of x and z,

and the parameters K I and K 2 are known as the geodesic curvatures of

the curves z = const, and x = const., respectively.

(3)
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JET EXIT

,URFACE STREAMLINE

Figure i.- Physical system and flow schematic.
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The boundary conditions for Eqs. (i) through (3) for zero mass

transfer are

y = 0 u,w,v = 0

+_ u÷u ..(x,z_ w+w (x,z)Y
e e

(4)

As indicated earlier, the previous equations are transformed by

defining

x = x z = z (5)

and introducing a two-component vector potential given by

h2 u = 3__ hl w = __i
_y _Y

(6)

In addition, the dimensionless variables f and g related to _ and _ are

defined by

= (Ue_S I)_2h2 f (x, z,q)
(7a)

,_ = (Ue_Sl)_l(We/Ue)g(x,z,N)
(7b)

Here sl, which denotes the arc length along the x coordinate, is

defined by

Xs I = hldX
(8)
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The parameters K l and K2 in Eq. (2) are deflned by

i dhl and K 2 = i dh2
KI = hlh 2 dz hlh 2 dx

With the concept of eddy viscosity and with the previous transformed

variables, it can be shown that the system of Eqs. (I) through (4) can

be written as

x-Momentum Equation

(bf")' + P1ff" + P2[I - (f,)2] + ps[l _ f,g,]

+ p_f,,g + ps[l - (g,)2]

(9)

z-Momentum Equation

(bg") + P1fg" + P (i - f'g') + P3[I - (g,)2]

+ pGgg,, + pg[l _ (f,)2]

_01__ _,,__+_(_ __z)l (i0)

_= 0 f - g - f' = g' = 0 (lla)

n = _ f' = g' = i
(llb)
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Here the primes denote differentiation with respect to , and

+ = g'b = i+£ + g = S/_ f' u/u = w/w
e e

(12a)

The coefficients PI to P10 are functions of Ue, We, hl, h2, K 1 , and K 2

and are given by the following formulas:

PI = (FoUl)/2 - SlK2 P2 = M P3 = R

u<_1 =--We (N - s )P_ = Q - slK2 P5 u IKI
e

We I'h-1 _s N1 !_I
1 We SlKl

P6 = R + _ _z -
e

( eh
= __k __e Pa = sIK

e7 h 2 u e \Ue/ 2

SlP_ = Ue siK1 P_0 = xh---I-
(12b)

s _u s _u
1 e i e

M N=
u h _x u h _z
el e2

s _w s _w
i e I e

Q = u h _x R = u h _z
e I e 2

In order to solve Eqs. (9) through (ii), initial conditions are

required at a starting plane. In the case of the boundary-layer problem,
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the initial conditions at x = 0 and z = 0 planes are obtained by solving

the limiting form of Eqs. (9) and (i0). For a wall jet, initial velocity

profiles are prescribed at some downstream x plane and along the z = 0

plane, attachment llne equations are solved. The attachment llne equations

are obtained by differentiating the z-momentum equation with respect to

z and setting

w _p = 3_yu. __Xv _2w
= _z _z Bz = _z-_r = 0

The resulting attachment line equations valid at the z = 0 plane are

(bf")' + P1ff" + P2[I - (f,)2] + psgf,, = xP (13)

(bg")' + Plfg" + P (i - f'g') + P3[I - (g,)2]

+ Ps gg'' = xP101f' _g'_x- g'' _f] (14)

Here, g' is defined as Wz/W e
Z

Eddy-Viscoslty Model

Eqs. (2) and (3) contain Reynolds shear stress terms -u'v' and -v'w'.

In order to satisfy the closure assumptions for these shear stress terms,

we use the eddy viscosity concept and define

CI u<2 i]
-u'v' =_u = _ 1 u

y 1+< 2 yUy y

-w'v' E w 1 2 I 1

Y 1+< I Y Y

(15)
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The second term inside the bracket in Eq. (15) is due to curvature where

Kl and <2 denote the radius of curvature of z = const, and x = const, lines.
The quantity E is assumedto be samein both the x and z directions and

is represented by a two-layer model. Referring to Fig. 2, the structure
of these layers is as follows:

First Layer

= (0.435 y)2 _u 2 + w 2 0 < y < y*
Y Y

Second Layer

- i)2 2 + w z= (0.125 y _Uy Y y >Y*

(16)

where at y = Y I'

I _/u 2 + w e - _/u 2 + w2[
e e

U 2 + W 2

e e

--_0.01

and y* is obtained by imposing continuity in _ at y = y*. This yields

Y* = 0.4350.125Yl" CI and C2 appearing in Eq. (15) can be assigned values

between one and three.

Finite Difference Equations

First, reduce the system (9)-(10) to the first order system

f I' = 11 (17

U I ---- V (18

g! ---- W (19

W e ----t (20
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u

W e
e
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SECOND LAYER

_ x
U,W

Figure 2.- Two-layer eddy viscosity model.
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(by)' + PlfV + P2( I - u2) + Ps [I - uw]

+ p6vg + ps[1 - w21 = xP_o u 7x- v_+ P7 _- v
(21)

(bt)' + P ft + P (i - uw) + P (i - w 2) + P gt
I 4 3 6

u -t +P w t
+ P (i - u 2) _ XPIo _ _xx 7 _z-

(22)

Let

+ k n = 1,2,...,N
= constant x = x

x0 n n-i n

z ° _ 0 z i = Zi_ I + r i i = 1,2,...,1

qO = 0 _j " _j-i + hj
j = 1,2,...,J

Then, using the box method, we have

fn,i fn,i
J - n-i n,i

hj J- =

(23)

n,i n,i

• - uju 3 -i n,i

hj - v j_½

(24)

n,i _ n,i

5 hj gJ-i = n,iwj_½

(25)

n,i n,i
w.
J - wj_! n,i

= t 1
h. j-_

J

(26)
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Weuse the notation

-- pn-½,i-½ _ _n-½
P = -j-½ _i-½

and

--v.j= _i ( n,i_j + vjn'i-i + vj-l'i-i + v.n-l'i)3

-- i [ n,i un,i-l_
ui=_j__+ j__ !

-- i [ n,i n-l,ih

u =_ _uj_½+un J--2 J

Equation (21) becomes, with the box centered at (Xn_;_,zi_½,nj_ ½)

(b. v - b /hjJ J ]-IVj-i )

(fv)j - - uj__) - -=- P -½ P2(I --z P (i u. l w. _)1 5 j--_ j-_

- P_(vg)j_½ - Ps(I - w__½)

I - - (f - fn l )
(Un Un-l) - vj__ k

+ Xn__Pl0 uj_½ kn n

% - 71_ )_ % -+ P7 -½ r i - vj_½ r.
1

(27)

Equation (22) and the attachment line equations (13)-(14) are discretized

similarly. Details of the procedure are given in Ref. 4.
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The solution procedures involves the following steps:

(i) Solve the attachment line equations (13)-(14) with boundary

conditions (ii) at x = x I and z = 0 assuming initial conditions

on X = X 0 •

(2) March in the z-direction along the plane x = x I and solve

equations (17)-(22) with boundary conditions (11) for the

unknowns (f,u,v,g,w,t).

(3) Repeat steps (i) and (2) for the next x-plane, x = x2, and so on.

The most efficient way to solve the finite difference equations is

to use a pseudo-Newton's relaxation scheme. These equations may be written

as a system of nonlinear algebraic equations by writing

¢(u) : 0

where

u = (f_,i, uj,i, v3,i, gj,i, wj,i, tj,i)
~ j=O

Then, the relaxed Newton's method becomes

) lu( _z)) (28a)

(v) (v-l) (28b)u : u + _6u ('-I)

for v = 1,2,...
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The method is said to have converged when

II_u(_-l)ll _ e (a prescribed error tolerance)

Wecall Eq. (28) a pseudo-Newton's methodbecausewe linearize the
b terms in equations (21) and (28) by evaluating them at _-2 before

computing the Jacobianmatrlx, _/_u. Consequently, this algorithm will

not be quite quadratically convergent. We, therefore, employ relaxation
(_ _ i) to accelerate it. Remarkably, underrelaxation (_ < i) works

very well, while overrelaxation (_ > i) diverges. Values of w of 0.5,

0.6, 0.7, 0.9, and 0.9 all give good results with w = 0.7 slightly the
overall best for someof our computational experiments.

An important feature of Keller's box method is that the Jacobian

matrix can be put into block tridlagonal form and very efficient elimination
schemescan be employedfor solving equation (28a).

Minor Difficulties with the Numerical Algorithm

When starting at x I x0 _ 0 with supplied velocity profiles,

unnatural oscillations developed in the solution. This difficulty was

eliminated completely by employing the following "trick." The first

i0 mesh points in the x-direction were set at k = i0 -_. For the first
n

five planes in the x-direction and all points in the z-direction in these

planes, an average value was used for past points, i.e.,

_-l,i (fj-l,i j-2,1) i-i (j i-I n,i-2)f - 0.5 + f , fn,j = 0.5 f ' + fj

and

fn.-l,i-i=j 0.5(fn-l,i-i +k J fj-2,i-l)
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Beginning with the sixth x-plane, the averaging was eliminated (the standard
algorithm was employed). At the eleventh x-plane a geometric mesh-

stretching algorithm of the following form was used:

kn - 1.2kn_1 n = 11,12,13 ....

No such stretching has been employed in the z-direction, but in the future

it may also be required for rapidly changing profiles. It should be

noted that our averaging algorithm was required in both the x and z

directions to remove all oscillations.

A mesh refinement algorithm is used which adds or deletes points

depending on the relative local variation in the truncation error of the

difference equations. Roughly 80 grid points in the q-direction and

ii grid points in the z-direction are employed.

Results

Computations were performed on the Berkeley CDC 7600 machine. A

typical calculation required about 6 minutes of CPU time. Fig. 3 indicates

the external and initial velocity distributions which have been used as a

basis for our calculations. The parameter O was introduced as shown to

vary the initial cross flow while keeping the total velocity constant

as a rough simulation of a fixed supply of engine mass flow. The velocity

proflle was selected to have a characteristic fully developed character

associated with turbulent wall jet flows. Future aspects of this effort

will consider the "eating up" of the potential core which is assumed to

occur upstream of the initial station of this analysis. The parameters

C 2 and C 3 were chosen to provide slope and value continuity of the profile

at y = Ymax" For y _ Ymax the profile has a half Gaussian character

associated with a free Jet. For y _ Ymax the profile has a boundary-

layer character. In the examples, the u and w initial profiles were

assumed to be identical. Moreover, the @ distribution was selected to be
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qualitatively similar to that observed by rake surveys on the XFV-12A.

The zero cross flow case was achieved by setting C to i0 -Is

Figure 4 demonstrates decay of the peak velocity with the standardized

distributions of Fig. 3, with and without cross flow. It is evident from

the figure that cross flow has a dramatic effect on enhancing the decay

of the maximum velocity. In the calculations, the exponent n in the

external velocities is assumed as ½, roughly in accord with a value

obtained from a two-dimensional line sink simulating inflow originally

proposed by G.I. Taylor. s In a more realistic model, these external

velocity distributions should be corrected for three-dimensionality and

elliptic interaction with the wall Jet. A calculation of this type

would be a more accurate representation than the present approach of

planform and surface curvature effects. In this connection, we recognize

that that means of simulating taper, sweepback, and spanwise pressure

gradients in the present analysis is solely through cross flow adjustment.

The three-dimensional invlscid potential _ can be characterized by

a surface sink distribution of the form (see Fig. 5)

i /_S G($_)dSd__(x,y,z) = 4--# /(x__)2 + y2 + (z__)2
(29)

where S the area of integration refers to the total Jet area on and

off the wing. The quantity o is the sink strength obtained by matching

with an "outer limit" of the second order solution for the velocity

normal to the body appearing in the viscous inner wall jet solution.

The quantity o for two-dimensional boundary layers is analogous to the

streamwise gradient of the displacement thickness 6'(x). To include

lifting surface effects, a surface doublet or vortex distribution should

be added to (29). The local vortex strength can also be determined by

matching.

The inflow velocity related to the sink intensity _ in (29) is in

turn a function of the entrainment. This quantity is also significant
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U
-1/2 -1/2

= -_ (ztip- UoX COS e, we UoX SIN e, e _- z - z)

STANDARD INITIAL PROFILE (z = z1)

U
max

U
e

2.0

L6

L2

0.8

0.4

N\ _ U -

w _0
e

w _0
e

0 I I I t 1 t

0 i 2 3 4 5 6 7

X (Fr)

Figure 4.- Effect of cross flow on .jet growth.

158



Y

/

/

Figure 5.- Tapered thrust augmented wing (TAW).
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from the standpoint of the tradeoff between skin friction, BLC, and rapid

acceleration of the secondary in compact three-dimenslonal thrust augmenting

ejectors such as those employedon the XFV-12Aand upper surface blowing.

In Fig. 6, the comparison betweencross flow and the absenceof it

gives the indicated entrainment variations with streamwise distance. In
spite of the appreciable increase in decay of the maximumvalue of u shown

in Fig. 4, and resultant shear stress in Fig. 7, only a slight difference
in entrainment quantity and rate is shownin Fig. 6. The difference in
maximumvelocities which are similar for w, the spanwise component, are

presumably related to the enhanceddissipation associated with cross flow
and that implied by the eddy viscosity model. The lack of a corresponding

decrease in entrainment rate maybe due to nonlinear compensating effects
built into the turbulence model and cannot be readily explained on an
intuitive basis at this time. In this connection, other calculations

will be performed for which the streamwise componentof the initial

velocity is held fixed rather than its overall magnitude on introduction
of cross flow. It should be noted that the expression for entrainment Q

given in Fig. 6 assumesthat w at the tip z = zti p = 0. If this is not
the case, an additional term must be added to this relation.

Associated with the previous results, Fig. 8 shows the effect of

cross flow on jet spreading rate related to Ymax" As previously, only
small differences are indicated for the cases considered. In Fig. 9,

however, an important upstream movementof the separation line is indicated
with the introduction in cross flow. This result is significant with

respect to penalties associated with taper and sweepin three-dimensional
ejector diffusors.

In Fig. i0, another important consequenceof cross flow is examined
in connection with the surface streamline pattern. In the figure, two

cases are comparedinvolving differing amountsof cross flow. Significant
enhancementin downstreamstreamtube contraction is obvious with increase

in cross flow. This contraction could presumably lead to end wall

separation of the type observed on the XFV-12A.
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Figure 6.- Effect of cross flow on entrainment.
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Figure 7.- Effect of cross flow on reduced shear stress.
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Figure 8.- Effect of cross fJow on jet spreading.
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Figure kO.- Cross flow effect on jet "shrink" and "cnd-wal[ pullaway."
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Conclusions

A class of cases were investigated roughly possessing initial flow

angularity and adverse pressure gradients prototypic of those on the

XFV-12A. Results obtained from the computational model indicate that if

the initial total velocity is kept fixed then the introduction of the cross

flow enhances the decay rate of the peak of the streamwise velocity

component. In addition, the entrainment quantity and its rate decrease

with increased cross flow. The implication of this phenomenon with

respect to taper effect on boundary layer control (BLC) of the XFV-12A

Coandas is not as significant as a "jet shrink" which has also been

indicated in our approximate three-dimensional model. This contraction

has been postulated as a mechanism promoting end-wall separation. To

our knowledge, our model is the first to quantify such trends. Finally,

the effect on the prescribed external adverse pressure gradient in the

presence and absence of cross flow has also been examined. From the

limited results, the spanwise separation line moves progressively further

upstream with increasing cross flow.
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