1,012 research outputs found

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Polarization states of polydomain epitaxial Pb(Zr1-xTix)O3 thin films and their dielectric properties

    Get PDF
    Ferroelectric and dielectric properties of polydomain (twinned) single-crystal Pb(Zr1-xTix)O3 thin films are described with the aid of a nonlinear thermodynamic theory, which has been developed recently for epitaxial ferroelectric films with dense laminar domain structures. For Pb(Zr1-xTix)O3 (PZT) films with compositions x = 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4, the "misfit strain-temperature" phase diagrams are calculated and compared with each other. It is found that the equilibrium diagrams of PZT films with x > 0.7 are similar to the diagram of PbTiO3 films. They consist of only four different stability ranges, which correspond to the paraelectric phase, single-domain tetragonal ferroelectric phase, and two pseudo-tetragonal domain patterns. In contrast, at x = 0.4, 0.5, and 0.6, the equilibrium diagram displays a rich variety of stable polarization states, involving at least one monoclinic polydomain state. Using the developed phase diagrams, the mean out-of-plane polarization of a poled PZT film is calculated as a function of the misfit strain and composition. Theoretical results are compared with the measured remanent polarizations of PZT films grown on SrTiO3. Dependence of the out-of-plane dielectric response of PZT films on the misfit strain in the heterostructure is also reported.Comment: 23 pages, 4 figure

    Seed production from the mixed mating system of Chesapeake Bay (USA) eelgrass (Zostera marina; Zosteraceae)

    Get PDF
    In monoecious plants, gametes can be exchanged in three ways: among unrelated genets (outbreeding), with close relatives (inbreeding), or within individuals (geitonogamous selling). These different mating systems may have consequences for population demography and fitness. The experiment presented herein used artificial crosses to examine the mating system of Chesapeake Bay, Virginia, USA eelgrass (Zostera marina L; Zosteraceae), a bisexual submerged aquatic plant that can outbreed, inbreed, and self. Genetic data indicate severe heterozygosity deficiencies and patchy genotype distribution in these beds, suggesting that plants therein reproduce primarily by vegetative propagation, autogamy, or geitonogamy. To clarify eelgrass reproductive strategies, flowers from three genetically and geographically distinct beds were hand-pollinated in outbred, inbred, and selfed matings. Fertilization success and seed production, life history stages which contribute greatly to the numeric maintenance of populations, were monitored. We found no evidence that inbreeding had negative consequences for seed production. On the contrary, selfed matings produced seeds significantly more frequently than outcrossed matings and produced significantly larger numbers of seeds than either inbred or outbred matings. These results contrast with patterns for eelgrass in other regions but might be expected for similar populations in which pollen limitation or a short reproductive season renders selfing advantageous

    Formation and Development of the Training System for Innovative Development of Regional Industry

    Get PDF
    The paper determines tendencies of modern economy development. The key role in the expanded reproduction of innovation processes in the regions in modern conditions belongs to the enhancement of human capital. Regions are actively increasing their efforts in creating innovative infrastructure, knowledge-intensive industries, while success of regional development is directly related to the effectiveness and cohesion of all innovation infrastructure elements. An indispensable condition for the successful development of innovative infrastructure and high-tech industries is the region economy saturation with highly qualified personnel, particularly mining, trained in view of the projected trends of innovative development

    Ferroelectric Phase Transitions in Films with Depletion Charge

    Full text link
    We consider ferroelectric phase transitions in both short-circuited and biased ferroelectric-semiconductor films with a space (depletion) charge which leads to some unusual behavior. It is shown that in the presence of the charge the polarization separates into `switchable' and `non-switchable' parts. The electric field, appearing due to the space charge, does not wash out the phase transition, which remains second order but takes place at somewhat reduced temperature. At the same time, it leads to a suppression of the ferroelectricity in a near-electrode layer. This conclusion is valid for materials with both second and first order phase transitions in pure bulk samples. Influence of the depletion charge on thermodynamic coercive field reduces mainly to the lowering of the phase transition temperature, and its effect is negligible. The depletion charge can, however, facilitate an appearance of the domain structure which would be detrimental for device performance (fatigue). We discuss some issues of conceptual character, which are generally known but were overlooked in previous works. The present results have general implications for small systems with depletion charge.Comment: 11 pages, REVTeX 3.1, five eps-figures included in the text. Minor clarifications in the text. To appear in Phys. Rev. B 61, Apr 1 (2000

    Probing orbital ordering in LaVO3_{3} epitaxial films by Raman scattering

    Get PDF
    Single crystals of Mott-Hubbard insulator LaVO3 exhibit spin and orbital ordering along with a structural change below ≈140 K. The occurrence of orbital ordering in epitaxial LaVO3films has, however, been little investigated. By temperature-dependent Raman scatteringspectroscopy, we probed and evidenced the transition to orbital ordering in epitaxial LaVO3film samples fabricated by pulsed-laser deposition. This opens up the possibility to explore the influence of different epitaxial strain (compressive vs. tensile) and of epitaxy-induced distortions of oxygen octahedra on the orbital ordering, in epitaxial perovskite vanadate films

    Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures

    Full text link
    A Landau-Ginsburg-Devonshire-type nonlinear phenomenological theory is presented, which enables the thermodynamic description of dense laminar polydomain states in epitaxial ferroelectric thin films. The theory explicitly takes into account the mechanical substrate effect on the polarizations and lattice strains in dissimilar elastic domains (twins). Numerical calculations are performed for PbTiO3 and BaTiO3 films grown on (001)-oriented cubic substrates. The "misfit strain-temperature" phase diagrams are developed for these films, showing stability ranges of various possible polydomain and single-domain states. Three types of polarization instabilities are revealed for polydomain epitaxial ferroelectric films, which may lead to the formation of new polydomain states forbidden in bulk crystals. The total dielectric and piezoelectric small-signal responses of polydomain films are calculated, resulting from both the volume and domain-wall contributions. For BaTiO3 films, strong dielectric anomalies are predicted at room temperature near special values of the misfit strain.Comment: 19 pages, 8 figure

    Departure from solid solution behavior in double perovskites

    Get PDF
    Mixed ionic electronic conducting oxides (MIEC) serve a plethora of electrochemical applications such as cathodes for solid oxide electrochemical cells and oxygen evolution reaction catalysts for water splitting. These applications rely to a large extent on the MIEC’s ability for electron and/or ion transfer across the solid/gas or solid/liquid interface. The efficacy of these reactions being governed by the surface defect chemistry and electronic structure, rational design of the (surface) chemistry presents itself as an auspicious path to tune these properties towards optimal device performance. Please click Additional Files below to see the full abstract

    Theoretical current-voltage characteristics of ferroelectric tunnel junctions

    Get PDF
    We present the concept of ferroelectric tunnel junctions (FTJs). These junctions consist of two metal electrodes separated by a nanometer-thick ferroelectric barrier. The current-voltage characteristics of FTJs are analyzed under the assumption that the direct electron tunneling represents the dominant conduction mechanism. First, the influence of converse piezoelectric effect inherent in ferroelectric materials on the tunnel current is described. The calculations show that the lattice strains of piezoelectric origin modify the current-voltage relationship owing to strain-induced changes of the barrier thickness, electron effective mass, and position of the conduction-band edge. Remarkably, the conductance minimum becomes shifted from zero voltage due to the piezoelectric effect, and a strain-related resistive switching takes place after the polarization reversal in a ferroelectric barrier. Second, we analyze the influence of the internal electric field arising due to imperfect screening of polarization charges by electrons in metal electrodes. It is shown that, for asymmetric FTJs, this depolarizing-field effect also leads to a considerable change of the barrier resistance after the polarization reversal. However, the symmetry of the resulting current-voltage loop is different from that characteristic of the strain-related resistive switching. The crossover from one to another type of the hysteretic curve, which accompanies the increase of FTJ asymmetry, is described taking into account both the strain and depolarizing-field effects. It is noted that asymmetric FTJs with dissimilar top and bottom electrodes are preferable for the non-volatile memory applications because of a larger resistance on/off ratio.Comment: 14 pages, 8 figure
    corecore