6,448 research outputs found

    Sagnac delay in the Kerr-dS space-time: Implications for Mach's principle

    Full text link
    Relativistic twin paradox can have important implications for Mach's principle. It has been recently argued that the behavior of the time asynchrony (different aging of twins) between two flying clocks along closed loops can be attributed to the existence of an absolute spacetime, which makes Mach's principle unfeasible. In this paper, we shall revisit, and support, this argument from a different viewpoint using the Sagnac delay. This is possible since the above time asynchrony is known to be exactly the same as the Sagnac delay between two circumnavigating light rays re-uniting at the orbiting source/receiver. We shall calculate the effect of mass MM and cosmological constant Λ\Lambda on the delay in the general case of Kerr-de Sitter spacetime. It follows that, in the independent limits M0M\rightarrow 0, spin a0a\rightarrow 0 and Λ0\Lambda\rightarrow 0, while the Kerr-dS metric reduces to Minkowski metric, the clocks need not tick in consonance since there will still appear a non-zero observable Sagnac delay. While we do not measure spacetime itself, we do measure the Sagnac effect, which signifies an absolute substantive Minkowski spacetime instead of a void. We shall demonstrate a completely different limiting behavior of Sagnac delay, heretofore unknown, between the case of non-geodesic and geodesic source/observer motion.Comment: 15 pages. arXiv admin note: text overlap with arXiv:1709.0841

    Stability of Circular Orbits in General Relativity: A Phase Space Analysis

    Full text link
    Phase space method provides a novel way for deducing qualitative features of nonlinear differential equations without actually solving them. The method is applied here for analyzing stability of circular orbits of test particles in various physically interesting environments. The approach is shown to work in a revealing way in Schwarzschild spacetime. All relevant conclusions about circular orbits in the Schwarzschild-de Sitter spacetime are shown to be remarkably encoded in a single parameter. The analysis in the rotating Kerr black hole readily exposes information as to how stability depends on the ratio of source rotation to particle angular momentum. As a wider application, it is exemplified how the analysis reveals useful information when applied to motion in a refractive medium, for instance, that of optical black holes.Comment: 20 pages. Accepted for publication in Int. J. theor. Phy

    Spin-Wave and Electromagnon Dispersions in Multiferroic MnWO4 as Observed by Neutron Spectroscopy: Isotropic Heisenberg Exchange versus Anisotropic Dzyaloshinskii-Moriya Interaction

    Get PDF
    High resolution inelastic neutron scattering reveals that the elementary magnetic excitations in multiferroic MnWO4 consist of low energy dispersive electromagnons in addition to the well-known spin-wave excitations. The latter can well be modeled by a Heisenberg Hamiltonian with magnetic exchange coupling extending to the 12th nearest neighbor. They exhibit a spin-wave gap of 0.61(1) meV. Two electromagnon branches appear at lower energies of 0.07(1) meV and 0.45(1) meV at the zone center. They reflect the dynamic magnetoelectric coupling and persist in both, the collinear magnetic and paraelectric AF1 phase, and the spin spiral ferroelectric AF2 phase. These excitations are associated with the Dzyaloshinskii-Moriya exchange interaction, which is significant due to the rather large spin-orbit coupling.Comment: 8 pages, 6 figures, accepted for publication in Physical Review
    corecore