3,776 research outputs found
Surface magnetic ordering in topological insulators with bulk magnetic dopants
We show that a three dimensional topological insulator doped with magnetic
impurities in the bulk can have a regime where the surface is magnetically
ordered but the bulk is not. This is in contrast to conventional materials
where bulk ordered phases are typically more robust than surface ordered
phases. The difference originates from the topologically protected gapless
surface states characteristic of topological insulators. We study the problem
using a mean field approach in two concrete models that give the same
qualitative result, with some interesting differences. Our findings could help
explain recent experimental results showing the emergence of a spectral gap in
the surface state of Bi2Se3 doped with Mn or Fe atoms, but with no measurable
bulk magnetism.Comment: 8 pages, 6 figure
Mapping the Berry Curvature from Semiclassical Dynamics in Optical Lattices
We propose a general method by which experiments on ultracold gases can be
used to determine the topological properties of the energy bands of optical
lattices, as represented by the map of the Berry curvature across the Brillouin
zone. The Berry curvature modifies the semiclassical dynamics and hence the
trajectory of a wave packet undergoing Bloch oscillations. However, in two
dimensions these trajectories may be complicated Lissajous-like figures, making
it difficult to extract the effects of Berry curvature in general. We propose
how this can be done using a "time-reversal" protocol. This compares the
velocity of a wave packet under positive and negative external force, and
allows a clean measurement of the Berry curvature over the Brillouin zone. We
discuss how this protocol may be implemented and explore the semiclassical
dynamics for three specific systems: the asymmetric hexagonal lattice, and two
"optical flux" lattices in which the Chern number is nonzero. Finally, we
discuss general experimental considerations for observing Berry curvature
effects in ultracold gases.Comment: 12 page
Structure and screening in molecular and metallic hydrogen at high pressure
A variational wavefunction is used to express the (spin restricted) Hartree-Fock energy as reciprocal lattice sums for static lattice FCC monatomic hydrogen and diatomic Pa3 molecular hydrogen. In the monatomic phase the hydrogenic orbital range closely parallels the inverse Thomas-Fermi wavevector; the corresponding energy E has a minimum of -0.929 Ryd/electron at r sub s = 1.67. For the diatomic phase E(r sub s) is similar, but the constituent energies, screening, and bond length reflect a qualitative change in the nature of the solid at r sub s = 2.8. This change is interpreted in terms of a transition from protons as structural units (at high density) to weakly interacting models (at low density). Insensitivity of the total energy to a rapid fall in the bond length suggests association with the rotational transition where the rapid molecular orientations characteristic of high pressures disappear and the molecules rotate freely at low pressure
Thermal diffuse X-ray scattering in simple metals
Calculations are reported for the ionic structure factor and X-ray scattering cross section of sodium (at T=0 K and 90 K) and lithium (both isotopes at T=0 K) within the harmonic approximation. An evaluation of the appropriate displacement- displacement correlation function by the special point method circumvents the need for a multiphonon expansion. In the case of sodium, the structure in the one-phonon scattering was straightforwardly accounted for, and an approximate expansion was obtained for all multiphonon scattering. By treating core and conduction electrons on an equal footing, it is shown that information on the conduction electron system is present in the forward scattering component. In lithium the one-phonon cross section at small angles aids in the determination of the effective electron-ion interaction
Lattice two-body problem with arbitrary finite range interactions
We study the exact solution of the two-body problem on a tight-binding
one-dimensional lattice, with pairwise interaction potentials which have an
arbitrary but finite range. We show how to obtain the full spectrum, the bound
and scattering states and the "low-energy" solutions by very efficient and
easy-to-implement numerical means. All bound states are proven to be
characterized by roots of a polynomial whose degree depends linearly on the
range of the potential, and we discuss the connections between the number of
bound states and the scattering lengths. "Low-energy" resonances can be located
with great precission with the methods we introduce. Further generalizations to
include more exotic interactions are also discussed.Comment: 6 pages, 3 figure
Tailoring the Phonon Band Structure in Binary Colloidal Mixtures
We analyze the phonon spectra of periodic structures formed by
two-dimensional mixtures of dipolar colloidal particles. These mixtures display
an enormous variety of complex ordered configurations [J. Fornleitner {\it et
al.}, Soft Matter {\bf 4}, 480 (2008)], allowing for the systematic
investigation of the ensuing phonon spectra and the control of phononic gaps.
We show how the shape of the phonon bands and the number and width of the
phonon gaps can be controlled by changing the susceptibility ratio, the
concentration and the mass ratio between the two components.Comment: 4 pages 3 figure
Electronic Properties of Strained Si/Ge Core-Shell Nanowires
We investigated the electronic properties of strained Si/Ge core-shell
nanowires along the [110] direction using first principles calculations based
on density-functional theory. The diameter of the studied core-shell wire is up
to 5 nm. We found the band gap of the core-shell wire is smaller than that of
both pure Si and Ge wires with the same diameter. This reduced band gap is
ascribed to the intrinsic strain between Ge and Si layers, which partially
counters the quantum confinement effect. The external strain is further applied
to the nanowires for tuning the band structure and band gap. By applying
sufficient tensile strain, we found the band gap of Si-core/Ge-shell nanowire
with diameter larger than ~3 nm experiences a transition from direct to
indirect gap.Comment: 4 figure
Disorder induced transition into a one-dimensional Wigner glass
The destruction of quasi-long range crystalline order as a consequence of
strong disorder effects is shown to accompany the strict localization of all
classical plasma modes of one-dimensional Wigner crystals at T=0. We construct
a phase diagram that relates the structural phase properties of Wigner crystals
to a plasmon delocalization transition recently reported. Deep inside the
strictly localized phase of the strong disorder regime, we observe
``glass-like'' behavior. However, well into the critical phase with a plasmon
mobility edge, the system retains its crystalline composition. We predict that
a transition between the two phases occurs at a critical value of the relative
disorder strength. This transition has an experimental signature in the AC
conductivity as a local maximum of the largest spectral amplitude as a function
of the relative disorder strength.Comment: 5 pages, revtex. Typo regarding localization length exponent
corrected. Should read 1 / \delt
Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at micrometer scale
We report on the observation of Bloch oscillations on the unprecedented time
scale of severalseconds. The experiment is carried out with ultra-cold bosonic
strontium-88 loaded into a vertical optical standing wave. The negligible
atom-atom elastic cross section and the absence of spin makes Sr an
almost ideal Bose gas insensitive to typical mechanisms of decoherence due to
thermalization and to external stray fields. The small size enables precision
measurements of forces at micrometer scale. This is a challenge in physics for
studies of surfaces, Casimir effects, and searches for deviations from
Newtonian gravity predicted by theories beyond the standard model
Steering Magnetic Skyrmions with Nonequilibrium Green's Functions
Magnetic skyrmions, topologically protected vortex-like configurations in
spin textures, are of wide conceptual and practical appeal for quantum
information technologies, notably in relation to the making of so-called
race-track memory devices. Skyrmions can be created, steered and destroyed with
magnetic fields and/or (spin) currents. Here we focus on the latter mechanism,
analyzed via a microscopic treatment of the skyrmion-current interaction. The
system we consider is an isolated skyrmion in a square-lattice cluster,
interacting with electrons spins in a current-carrying quantum wire. For the
theoretical description, we employ a quantum formulation of spin-dependent
currents via nonequilibrium Green's functions (NEGF) within the generalized
Kadanoff-Baym ansatz (GKBA). This is combined with a treatment of skyrmions
based on classical localized spins, with the skyrmion motion described via
Ehrenfest dynamics. With our mixed quantum-classical scheme, we assess how
time-dependent currents can affect the skyrmion dynamics, and how this in turn
depends on electron-electron and spin-orbit interactions in the wire. Our study
shows the usefulness of a quantum-classical treatment of skyrmion steering via
currents, as a way for example to validate/extract an effective,
classical-only, description of skyrmion dynamics from a microscopic quantum
modeling of the skyrmion-current interaction.Comment: 10 pages, 8 figures, contribution to the proceedings of "Progress in
Nonequilibrium Green's Functions VII
- …