467 research outputs found
Hepatocyte Lysosomal Membrane Stabilization by Olive Leaves against Chemically Induced Hepatocellular Neoplasia in Rats
Extensive efforts are exerted looking for safe and effective chemotherapy for hepatocellular carcinoma (HCC). Specific and sensitive early biomarkers for HCC still in query. Present work to study proteolytic activity and lysosomal membrane integrity by hepatocarcinogen, trichloroacetic acid (TCA), in Wistar rats against aqueous olive leaf extract (AOLE).TCA showed neoplastic changes as oval- or irregular-shaped hepatocytes and transformed, vesiculated, and binucleated liver cells. The nuclei were pleomorphic and hyperchromatic. These changes were considerably reduced by AOLE. The results added, probably for the first time, that TCA-induced HCC through disruption of hepatocellular proteolytic enzymes as upregulation of papain, free cathepsin-D and nonsignificant destabilization of lysosomal membrane integrity, a prerequisite for cancer invasion and metastasis. AOLE introduced a promising therapeutic value in liver cancer, mostly through elevating lysosomal membrane integrity. The study substantiated four main points: (1) the usefulness of proteolysis and lysosomalmembrane integrity in early prediction of HCC. (2) TCA carcinogenesis is possibly mediated by lysosomal membrane destabilization, through cathepsin-D disruption, which could be reversed by AOLE administration. (3) A new strategy for management of HCC, using dietary olive leaf system may be a helpful phytotherapeutic trend. (4) A prospective study on serum proteolytic enzyme activity may introduce novel diagnostic tools
Numerical Study for a Marine Current Turbine Blade Performance under Varying Angle of Attack
Energy generation from marine currents is a promising technology for sustainable development. The success of using marine current turbines to tap the ocean hydrodynamic energy depends on predicting the hydrodynamic characteristics and performance of such turbines. This paper presents an analysis of the two-dimensional flow using commercial CFD software over a marine current turbine blade. The 2D flow is simulated for HF-SX NACA foil modified from S1210 NACA foil at various angles of attack with Reynolds number of 19×104, which represents the marine current flow. The hydrofoil is designed with considerations for lift and drag coefficients. The flow is simulated by solving the steady-state Navier-Stokes equations coupled with the k-ω shear stress transport (SST) turbulence model. The aim of this work is to study the effect of the angle of attack on the lift and drag coefficients. The computational domain is composed of non-homogenous structured meshing, with sufficient refinement of the domain near the foil blade in order to capture the boundary layer effects. Hence, all calculations are done at constant flow velocity while varying the angle attack for every model tested. The results have shown that the drag and lift coefficient, Cd and Cl coefficient increases with increasing the value of the angle of attack, ratio Cl/Cd curve related on performance at the peak 7o angle of attack
IMPROVING FRUIT SET, YIELD AND FRUIT QUALITY OF KHADRAWI DATE PALM CULTIVAR
This experiment was carried out during 2015 and 2016 experimental seasons to investigate the effect of spraying with moringa extract at 3%, garlic extract at 3% or ascorbic acid at 300 ppm on fruit set, yield and fruit quality of Khadrawi date palm cultivar. Anyhow, bunches were sprayed at three times (3 hours before pollination then 4 and 8 weeks after pollination). The present results indicated that spraying date palm bunches with moringa extract or garlic extract recorded the highest initial fruit set in the first and second seasons, respectively. As well as, moringa extract gave the highest fruit retention and yield in both seasons. In addition, all treatments improved some fruit physical characteristics i.e. fruit weight, flesh weight, fruit volume and fruit length compared to the control treatment in the two studied seasons. Also, results showed that moringa extract or ascorbic acid increased TSS%, total sugars % and reducing sugars % in both seasons compared to the control. Meanwhile, the lowest fibers % was obtained by garlic extract in the two seasons. Also, all treatments had no significant effect on total acidity % and tannins content in both seasons
Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals
Spiking neural networks (SNNs) enable power-efficient implementations due to
their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN
that uses unsupervised learning to extract discriminative features from speech
signals, which can subsequently be used in a classifier. The architecture
consists of a spiking convolutional/pooling layer followed by a fully connected
spiking layer for feature discovery. The convolutional layer of leaky,
integrate-and-fire (LIF) neurons represents primary acoustic features. The
fully connected layer is equipped with a probabilistic spike-timing-dependent
plasticity learning rule. This layer represents the discriminative features
through probabilistic, LIF neurons. To assess the discriminative power of the
learned features, they are used in a hidden Markov model (HMM) for spoken digit
recognition. The experimental results show performance above 96% that compares
favorably with popular statistical feature extraction methods. Our results
provide a novel demonstration of unsupervised feature acquisition in an SNN
Injection Drug Use Is a Risk Factor for HCV Infection in Urban Egypt
OBJECTIVE: To identify current risk factors for hepatitis C virus (HCV) transmission in Greater Cairo. DESIGN AND SETTING: A 1:1 matched case-control study was conducted comparing incident acute symptomatic hepatitis C patients in two "fever" hospitals of Greater Cairo with two control groups: household members of the cases and acute hepatitis A patients diagnosed at the same hospitals. Controls were matched on the same age and sex to cases and were all anti-HCV antibody negative. Iatrogenic, community and household exposures to HCV in the one to six months before symptoms onset for cases, and date of interview for controls, were exhaustively assessed. RESULTS: From 2002 to 2007, 94 definite acute symptomatic HCV cases and 188 controls were enrolled in the study. In multivariate analysis, intravenous injections (OR = 5.0; 95% CI = 1.2-20.2), medical stitches (OR = 4.2; 95% CI = 1.6-11.3), injection drug use (IDU) (OR = 7.9; 95% CI = 1.4-43.5), recent marriage (OR = 3.3; 95% CI = 1.1-9.9) and illiteracy (OR = 3.9; 95% CI = 1.8-8.5) were independently associated with an increased HCV risk. CONCLUSION: In urban Cairo, invasive health care procedures remain a source of HCV transmission and IDU is an emerging risk factor. Strict application of standard precautions during health care is a priority. Implementation of comprehensive infection prevention programs for IDU should be considered
Symptomatic Acute Hepatitis C in Egypt: Diagnosis, Spontaneous Viral Clearance, and Delayed Treatment with 12 Weeks of Pegylated Interferon Alfa-2a
The aim of this study was to estimate the proportion of spontaneous viral clearance (SVC) after symptomatic acute hepatitis C and to evaluate the efficacy of 12 weeks of pegylated interferon alfa-2a in patients who did not clear the virus spontaneously.Patients with symptomatic acute hepatitis C were recruited from two "fever hospitals" in Cairo, Egypt. Patients still viremic three months after the onset of symptoms were considered for treatment with 12 weeks of pegylated interferon alfa-2a (180 microg/week).Between May 2002 and February 2006, 2243 adult patients with acute hepatitis were enrolled in the study. The SVC rate among 117 patients with acute hepatitis C was 33.8% (95%CI [25.9%-43.2%]) at three months and 41.5% (95%CI [33.0%-51.2%]) at six months. The sustained virological response (SVR) rate among the 17 patients who started treatment 4-6 months after onset of symptoms was 15/17 = 88.2% (95%CI [63.6%-98.5%]).Spontaneous viral clearance was high (41.5% six months after the onset of symptoms) in this population with symptomatic acute hepatitis C. Allowing time for spontaneous clearance should be considered before treatment is initiated for symptomatic acute hepatitis C
Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adherence and proliferation of osteoblastic-like cells
The surface modification of three starch based polymeric biomaterials, using a KMnO4/NHO3 oxidizing system, and the effect of that modification on the osteoblastic cell adhesion has been investigated. The rationale of this work is as follows—starch based polymers have been proposed for use as tissue engineering scaffolds in several publications. It is known that in biodegradable systems it is quite difficult to have both cell adhesion and proliferation. Starch based polymers have shown to perform better than poly-lactic acid based materials but there is still room for improvement. This particular work is aimed at enhancing cell adhesion and proliferation on the surface of several starch based polymer blends that are being proposed as tissue engineering scaffolds.
The surface of the polymeric biomaterials was chemically modified using a KMnO4/HNO3 system. This treatment resulted in more hydrophilic surfaces, which was confirmed by contact angle measurements. The effect of the treatment on the bioactivity of the surface modified biomaterials was also studied. The bioactivity tests, performed in simulated body fluid after biomimetic coating, showed that a dense film of calcium phosphate was formed after 30 days. Finally, human osteoblast-like cells were cultured on unmodified (control) and modified materials in order to observe the effect of the presence of higher numbers of polar groups on the adhesion and proliferation of those cells. Two of the modified polymers presented changes in the adhesion behavior and a significant increase in the proliferation rate kinetics when compared to the unmodified controls.FCT (Portugal) for providing the postdoctoral grant (BPD/8491/2002)
The Core/E1 domain of Hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma
[EN] Background: Hepatitis C virus (HCV) infection is a well-documented etiological factor for hepatocellular carcinoma (HCC). As HCV shows remarkable genetic diversity, an interesting and important issue is whether such a high viral genetic diversity plays a role in the incidence of HCC. Prior data on this subject are conflicting.
Objectives: Potential association between HCV genetic mutations or strain variability and HCC incidence has been examined through a comparative genetic analysis merely focused on a single HCV subtype (genotype 4a) in a single country (Egypt).
Study design: The study focused on three HCV sequence datasets with explicit sampling dates and disease patterns. An overlapping HCV Core/E1 domain from three datasets was used as the target for comparative analysis through genetic and phylogenetic approaches.
Results: Based on partial Core/E1 domain (387 bp), genetic and phylogenetic analysis did not identify any HCC-specific viral mutations and strains, respectively.
Conclusions: The Core/E1 domain of HCV genotype 4a in Egypt does not contain HCC-specific mutations or strains. Additionally, sequence errors resulting from the polymerase chain reaction, together with a strong evolutionary pressure on HCV in patients with end-stage liver disease, have significant potential to bias data generation and interpretation. (C) 2011 Elsevier B.V. All rights reserved.This work was supported by NIH grants R01 DK80711 (Dr. Xiaofeng Fan), R21 AI076834 (Dr. Adrian M. Di Bisceglie) and USA and Egypt Science and Technology Joint Fund BIO6-002-004 (Dr. Adrian M. Di Bisceglie).Zhang, X.; Ryu, SH.; Xu, Y.; Elbaz, T.; Zekri, AN.; Abdelaziz, AO.; Abdel-Hamid, M.... (2011). The Core/E1 domain of Hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma. Journal of Clinical Virology. 52(4):333-338. https://doi.org/10.1016/j.jcv.2011.08.022S33333852
Extensive permethrin and DDT resistance in Anopheles arabiensis from eastern and central Sudan
<p>Abstract</p> <p>Background</p> <p>The distribution of insecticide treated nets (ITN) has been dramatically scaled up in eastern and central Sudan. Resistance to insecticides has already been reported in this region and there is an urgent need to develop appropriate resistance management strategies, which requires detailed information on the extent and causes of resistance. This study assessed resistance to permethrin and DDT in seven populations of <it>Anopheles arabiensis </it>from Sudan.</p> <p>Results</p> <p>Three out of the seven populations were defined as resistant to permethrin and five of six populations resistant to DDT according to WHO criteria. The 1014F kdr allele was present in all six populations tested and the presence of this allele was significantly correlated with resistance to permethrin (<it>P </it>= 0.0460). While homozygous 1014F individuals were statistically not more likely to survive (53.7%) permethrin than to be killed (38.6%) by the diagnostic dose, there was no difference in the likelihood of permethrin survival in heterozygotes (<it>P </it>= 0.7973). The susceptible genotypes were more likely to be killed by permethrin exposure than to survive (<it>P </it>= 0.0460). The 1014F allele failed to confer a survival advantage to the WHO diagnostic dose of DDT in either the homozygous or heterozygous state. The 1014S allele was not detected in any of the populations tested.</p> <p>Conclusion</p> <p>The kdr allele is certainly contributing to the extensive resistance to permethrin and DDT in Sudan but the high number of DDT (43%) and permethrin (16.7%) survivors that did not contain either kdr alleles suggests that other resistance mechanisms are also present in these populations. The high frequency of permethrin resistance throughout central and eastern Sudan is a cause of great concern for malaria control activities.</p
A holistic multi evidence approach to study the fragmentation behaviour of crystalline mannitol
Mannitol is an essential excipient employed in orally disintegrating tablets due to its high palatability. However its fundamental disadvantage is its fragmentation during direct compression, producing mechanically weak tablets. The primary aim of this study was to assess the fracture behaviour of crystalline mannitol in relation to the energy input during direct compression, utilising ball milling as the method of energy input, whilst assessing tablet characteristics of post-milled powders. Results indicated that crystalline mannitol fractured at the hydrophilic (011) plane, as observed through SEM, alongside a reduction in dispersive surface energy. Disintegration times of post-milled tablets were reduced due to the exposure of the hydrophilic plane, whilst more robust tablets were produced. This was shown through higher tablet hardness and increased plastic deformation profiles of the post-milled powders, as observed with a lower yield pressure through an out-of-die Heckel analysis. Evaluation of crystal state using x-ray diffraction/differential scanning calorimetry showed that mannitol predominantly retained the β-polymorph; however x-ray diffraction provided a novel method to calculate energy input into the powders during ball milling. It can be concluded that particle size reduction is a pragmatic strategy to overcome the current limitation of mannitol fragmentation and provide improvements in tablet properties
- …