192 research outputs found

    A microscopic study of the proton-neutron symmetry and phonon structure of the low-lying states in 92Zr

    Full text link
    We studied in a microscopic multiphonon approach the proton-neutron symmetry and phonon structure of some low-lying states recently discovered in 92Zr. We confirm the breaking of F-spin symmetry, but argue that the breaking mechanism is more complex than the one suggested in the original shell model analysis of the data. We found other new intriguing features of the spectrum, like a pronounced multiphonon fragmentation of the states and a tentative evidence of a three-phonon mixed symmetry state.Comment: 13 pages, to appear in Phys. Rev.

    An application of the 3-dimensional q-deformed harmonic oscillator to the nuclear shell model

    Get PDF
    An analysis of the construction of a q-deformed version of the 3-dimensional harmonic oscillator, which is based on the application of q-deformed algebras, is presented. The results together with their applicability to the shell model are compared with the predictions of the modified harmonic oscillator.Comment: 12 pages, LaTe

    Orbital Magnetic Dipole Mode in Deformed Clusters: A Fully Microscopic Analysis

    Get PDF
    The orbital M1 collective mode predicted for deformed clusters in a schematic model is studied in a self-consistent random-phase-approximation approach which fully exploits the shell structure of the clusters. The microscopic mechanism of the excitation is clarified and the close correlation with E2 mode established. The study shows that the M1 strength of the mode is fragmented over a large energy interval. In spite of that, the fraction remaining at low energy, well below the overwhelming dipole plasmon resonance, is comparable to the strength predicted in the schematic model. The importance of this result in view of future experiments is stressed.Comment: 10 pages, 3 Postscript figures, uses revte

    Simplified boson realization of the soq(3)so_q(3) subalgebra of uq(3)u_q(3) and matrix elements of soq(3)so_q(3) quadrupole operators

    Full text link
    A simplified boson realization of the soq(3)so_q(3) subalgebra of uq(3)u_q(3) is constructed. A simplified form of the corresponding soq(3)so_q(3) basis states is obtained. The reduced matrix elements of a special second-rank tensor operator (quadrupole operator) are calculated in the soq(3)so_q(3) basis.Comment: 13 pages, LaTeX. Uses ioplppt.sty, iopl12.st

    Toroidal, compression, and vortical dipole strengths in 144154^{144-154}Sm: Skyrme-RPA exploration of deformation effect

    Full text link
    A comparative analysis of toroidal, compressional and vortical dipole strengths in the spherical 144^{144}Sm and the deformed 154^{154}Sm is performed within the random-phase-approximation using a set of different Skyrme forces. Isoscalar (T=0), isovector (T=1), and electromagnetic excitation channels are considered. The role of the nuclear convection jconj_{\text{con}} and magnetization jmagj_{\text{mag}} currents is inspected. It is shown that the deformation leads to an appreciable redistribution of the strengths and causes a spectacular deformation splitting (exceeding 5 MeV) of the isoscalar compressional mode. In 154^{154}Sm, the μ\mu=0 and μ\mu=1 branches of the mode form well separated resonances. When stepping from 144^{144}Sm to 154^{154}Sm, we observe an increase of the toroidal, compression and vortical contributions in the low-energy region (often called pygmy resonance). The strength in this region seems to be an overlap of various excitation modes. The energy centroids of the strengths depend significantly on the isoscalar effective mass m0m_0. Skyrme forces with a large m0m_0 (typically m0/m0.81m_0/m \approx 0.8 - 1) seem to be more suitable for description of experimental data for the isoscalar giant dipole resonance.Comment: 13 pages, 10 figures, submitted to EJP

    Large scale shell model calculations for the yrast line of 138Xe

    Get PDF
    We have adopted an importance sampling iterative matrix diagonalization algorithm to compute a large scale shell model calculation of the yrast spectrum of 138Xe up to high spin thereby extending a previous calculation confined to low-lying angular momenta. An effective nucleon–nucleon interaction derived from the CD-Bonn nucleon-nucleon potential is used to compute energies, E2 transition probabilities, and occupation numbers. A satisfactory agreement with the experimental data is reached

    Orbital magnetism in axially deformed sodium clusters: From scissors mode to dia-para magnetic anisotropy

    Get PDF
    Low-energy orbital magnetic dipole excitations, known as scissors mode (SM), are studied in alkali metal clusters. Subsequent dynamic and static effects are explored. The treatment is based on a self-consistent microscopic approach using the jellium approximation for the ionic background and the Kohn-Sham mean field for the electrons. The microscopic origin of SM and its main features (structure of the mode in light and medium clusters, separation into low- and high-energy plasmons, coupling high-energy M1 scissors and E2 quadrupole plasmons, contributions of shape isomers, etc) are discussed. The scissors M1 strength acquires large values with increasing cluster size. The mode is responsible for the van Vleck paramagnetism of spin-saturated clusters. Quantum shell effects induce a fragile interplay between Langevin diamagnetism and van Vleck paramagnetism and lead to a remarkable dia-para anisotropy in magnetic susceptibility of particular light clusters. Finally, several routes for observing the SM experimentally are discussed.Comment: 21 pages, 7 figure

    Temperature Dependence of Damping and Frequency Shifts of the Scissors Mode of a trapped Bose-Einstein Condensate

    Full text link
    We have studied the properties of the scissors mode of a trapped Bose-Einstein condensate of 87^{87}Rb atoms at finite temperature. We measured a significant shift in the frequency of the mode below the hydrodynamic limit and a strong dependence of the damping rate as the temperature increased. We compared our damping rate results to recent theoretical calculations for other observed collective modes finding a fair agreement. From the frequency measurements we deduce the moment of inertia of the gas and show that it is quenched below the transition point, because of the superfluid nature of the condensed gas.Comment: 5 pages, 4 figure

    Removal of the center of mass in nuclei and its effects on 4He

    Get PDF
    Abstract The singular value decomposition of rectangular matrices is shown to provide the recipe for removing the center of mass spurious admixtures from the multiphonon basis generated by an equation of motion method for solving the nuclear eigenvalue problem. It works for any single particle basis without any energy restriction on the selection of the configurations. Its effects on 4He are illustrated
    corecore