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Abstract. We have adopted an importance sampling iterative matrix diagonalization
algorithm to compute a large scale shell model calculation of the yrast spectrum of 138Xe up to
high spin thereby extending a previous calculation confined to low-lying angular momenta. An
effective nucleon–nucleon interaction derived from the CD-Bonn nucleon-nucleon potential is
used to compute energies, E2 transition probabilities, and occupation numbers. A satisfactory
agreement with the experimental data is reached.

1. Introduction
The region around the doubly magic 132Sn represents a precious laboratory for investigating
how collectivity versus shell effects evolve as nuclei depart from shell closure and/or move away
from the stability valley.

The experiments performed on several chains of nuclei including Te, Xe, Ba, and Ce isotopes
[1] have been supported by theoretical investigations carried out within the quasiparticle-phonon
model (QPM) (see [2] for references), large scale shell model [3, 4, 5, 6, 7], and in the nucleon
pair approximation [8].

All theoretical studies were focused mainly on the quadrupole collectivity of the lowest
isoscalar and mixed symmetry 2+ states and therefore treated only low-lying levels of low spin.

We intend to explore the possibility of extending the description of the spectroscopic
properties of the nuclei in this region by computing the levels of higher spins. Our attention will
be concentrated first on neutron-rich even-even Xe isotopes.

These isotopes were already studied within a shell model approach endowed with an
importance sampling [9] using the CD-Bonn two-body potential in a large configuration space
[7]. The calculation was confined to the levels of spin up to Jπ = 6+.

Here, we adopt the same approach to generate the yrast line of 138Xe up to Jπ = 12+.
After a brief description of the method we analyze the results by relating them to the available
experimental data.

http://creativecommons.org/licenses/by/3.0
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2. The method
The large-scale shell model under consideration is described in [9, 10]. Here we will outline just
the main steps of the algorithm.

Let us consider a symmetric matrix representing a self-adjoint operator Â in an orthonormal
basis {| 1⟩, | 2⟩, . . . , | N⟩}. In order to determine the lowest m eigenvectors of the matrix we
have to follow an initialization loop and a subsequent set of refinement loops.

Step 1.The initialization begins by diagonalizing the matrix (aij) (i,j = 1, n), where n fulfills
the relation (m < n ≪ N). We choose the lowest m eigenvalues λi and eigenvectors | ϕi⟩, and
constructing the new matrix of dimensions (m+ n′)

α =

(
λ bj
bj a′

)
, (1)

where {λ} is a diagonal block composed of the eigenvalues (λni , i = 1,m), a′ is the new submatrix

a′jj′ = ⟨j | Â | j′⟩ with (j, j′ = n+1, n′), and {bj} is an off-diagonal block connecting λ to a and

is composed of the elements bij = ⟨ϕni | Â | j ⟩ where (i = 1,m; j = n+ 1, n′).

We add the lowest m eigenvalues λn
′

i together with the corresponding eigenvectors | ϕn′
i ⟩ to a

new subset of orthonormal states | j⟩ to build a new matrix and proceed as we did for α. This
initialization loop ends when the whole configuration space is exhausted. As a result, a zero
order approximation to the lowest eigenvalues and eigenvectors is obtained

E
(0)
i ≡ λNi , | ψ(0)

i ⟩ ≡| ϕNi ⟩ =
N∑
j=1

c
(N)
j | j⟩ , {i = 1,m}. (2)

Step 2. The solutions of the eigenvalue Eqs. (2) are used as an entry to the first refinement
loop, which goes through the same steps as described above with one difference. One should
just solve an eigenvalue problem of general form since the vectors | ϕ⟩ and | j⟩ are no longer
orthogonal. It has been shown in [9] that the eigenvalues E(n) and eigenvectors | ψ(n)⟩ obtained
after the n-th loop converge to the solution of the exact diagonalization of ⟨Â⟩.

Step 3. The implementation of the method requires an adequate sampling criterion for
reducing the size of the configuration space. Bearing in mind that the algorithm provides
accurate solutions already after the initialization loop, one can sample the configuration space
as follows:

• Diagonalize the submatrix {aij} (i, j = 1,m) and obtain its eigenvalues λi;

• For j = m+ 1, . . . , N , diagonalize the m+ 1-dimensional matrix

α =

(
Λm b⃗j
b⃗Tj ajj

)
, (3)

where b⃗j = {b1j , b2j , ·, bmj}.

• Accept the new state only if ∑
i=1,m

| λ′i − λi |> ϵ , (4)

otherwise ignore the state and continue the sampling process with a new vector j. In the
relation above ϵ is a small parameter which allows to control the accuracy of the truncation.
In the actual calculations we use an upgraded important sampling procedure [11, 12].

The main advantage of the method is that the two key elements – the diagonalization
procedure and the importance sampling– are closely related. The algorithm provides robust
and always ghost–free solutions and the accuracy of the truncation procedure is fully under
control.
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3. Calculations
We will describe 138Xe as 132Sn core plus four valence protons in the (1g7/2,d5/2,2d3/2,1h11/2,3s1/2)
model space and two valence neutrons occupying the (2f7/2,3p3/2,1h9/2,3p1/2,2f5/2,1i13/2) levels.
The effective two–body potential is a renormalized G matrix [13] derived from the CD–Bonn
potential [14]. The single-particle energies are the same as in [7]. They are listed in Table 1.

Table 1. Single particle energies in MeV.

Protons Neutrons

1g7/2 0.00 2f7/2 0.00
2d5/2 0.96 3p3/2 0.85
2d3/2 2.71 1h9/2 1.56
1h11/2 2.80 3p1/2 1.66
3s1/2 3.50 2f5/2 2.00

1i13/2 2.11

In the previous calculation [7] scaling factors for the pairing-like components of the two–
body potential were adopted. For the optimal reproduction of the experimental values of the
excitation levels up to Jπ = 12+ for 138Xe [15] we need to scale just the proton–proton Jπ = 0+

components by the factor 0.85.
We perform the shell model calculations in the m–scheme. It is useful to replace the standard

two–body Hamiltonian by the modified one

H = H + α [Ĵ
2 − J(J + 1)] , (5)

where α is a positive constant. Due to the additional term, the states with total spin different
from J are pushed up in energy for a sufficiently large α. Thus, the diagonalization yields only
the low-lying states of a given spin J .
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Figure 1. Convergence of the energy of the lowest 0+ states in MeV and the BE2(0+1 →
2+1 )[e

2fm4] value in 138Xe.

Although the shell model problem for 138Xe does not need a severe truncation of the
configuration space for any J value, the importance sampling procedure described in Sect. (2)
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will be absolutely necessary for the heavier xenon isotopes. Thus we will use the importance
sampling to restrict the size of the Hamiltonian and to study the convergence of the method.

First we determine a series of small positive values {ϵ1 > ϵ2 > ... > ϵm} and used them as a
sampling criterion in Eq. (4). To each value of ϵ corresponds an unique number of configuration
states which determine the Hamiltonian matrix to be diagonalize.

In Fig.1 we present the behavior of the energies of the lowest Jπ = 0+ states (left panel) and
the value of the B(E2; 0+1 → 2+1 ) (right panel) as functions of the size of the Hamiltonian matrix.
It is worthwhile to mention that, during the sampling procedure, all possible configurations are
explored. The eigenvalues of the lowest Jπ = 0+ states and the B(E2) value have a steep
exponential trend and, then, tend to their asymptotic values. The energies, however, converge
to the exact eigenvalues with just a small fraction of basis states. The convergence of the E2
transition rate is considerably slower. The reason for this is that the sampling is based mostly
on the energies.

D. Bianco et al.
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Figure 2. Low energy spectrum of 138Xe in MeV, compared with the experimental data [15]
and the previous calculation [7].

4. Results
The energy spectrum of 138Xe is presented in Fig.2. A very good agreement with the
experimental data [15] is achieved for the low lying excited states as well as for levels up to
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Jπ = 12+.
Table 2 shows that the calculation reproduces also the experimental E2 transition rate [16]

improving slightly the previous result [7]. In both cases the adopted effective charges were
eπ = 1.6e and eν = 0.7e.

Table 2. Experimental and theoretical BE2(0+1 → 2+1 )[e
2b2].

Exp [16] Bianco [7] this work

0.40 (10) 0.379 0.406

A further insight into the shell structure of the nucleus is provided by the proton and neutron
occupation numbers listed in Table 3. One should notice that our values deviate significantly
from the independent particle model rule (2(j + 1) for the hole and 0 for the particle states).

There is a large depletion of the proton Fermi sea starting from 0.52 for the 0+ ground state
and decreasing to 0.45 for the first 12+ state. This means that the excited states are highly
correlated. For neutrons, the depletion is considerably smaller. There is also no dependence on
the spin of the excited states as for protons.

5. Conclusions
The calculation has shown that the importance sampling algorithm can be extended successfully
to high spin states at least in 138Xe. It is, in fact, able to reproduce the yrast line up to Jπ = 12+

as well as the available experimental E2 transition rate The present work is the first step of a
project intended to cover low and high spin spectra of the nuclei in the region around 132Sn.

Table 3. Occupation numbers of the single particle levels for 138Xe.

0+1 2+1 4+1 6+1 8+1 10+1 12+1

protons

1g7/2 1.929 1.928 1.960 1.978 1.984 2.077 2.195
2d5/2 1.429 1.426 1.431 1.463 1.515 1.464 1.390
2d3/2 0.323 0.336 0.331 0.304 0.283 0.278 0.248
1h11/2 0.177 0.144 0.118 0.107 0.052 0.032 0.036
3s1/2 0.140 0.165 0.159 0.147 0.164 0.148 0.130

depletion 0.52 0.52 0.51 0.50 0.50 0.48 0.45

neutrons
2f7/2 1.241 1.101 1.140 1.232 1.088 1.124 1.165
3p3/2 0.342 0.492 0.418 0.316 0.400 0.351 0.223
1h9/2 0.096 0.075 0.077 0.094 0.146 0.128 0.213
3p1/2 0.098 0.126 0.149 0.096 0.124 0.136 0.067
2f5/2 0.176 0.181 0.198 0.243 0.225 0.247 0.322
1i13/2 0.046 0.024 0.016 0.016 0.016 0.014 0.009

depletion 0.38 0.45 0.43 0.38 0.46 0.44 0.42
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