74 research outputs found

    Type II and VI collagen in nasal and articular cartilage and the effect of IL-1α on the distribution of these collagens

    Get PDF
    The distribution of type II and VI collagen was immunocytochemically investigated in bovine articular and nasal cartilage. Cartilage explants were used either fresh or cultured for up to 4 weeks with or without interleukin 1α (IL-1α). Sections of the explants were incubated with antibodies for both types of collagen. Microscopic analyses revealed that type II collagen was preferentially localized in the interchondron matrix whereas type VI collagen was primarily found in the direct vicinity of the chondrocytes. Treatment of the sections with hyaluronidase greatly enhanced the signal for both types of collagen. Also in sections of explants cultured with IL-1α a higher level of labeling of the collagens was found. This was apparent without any pre-treatment with hyaluronidase. Under the influence of IL-1α the area positive for type VI collagen that surrounded the chondrocytes broadened. Although the two collagens in both types of cartilage were distributed similarly, a remarkable difference was the higher degree of staining of type VI collagen in articular cartilage. Concomitantly we noted that digestion of this type of cartilage hardly occurred in the presence of IL-1α whereas nasal cartilage was almost completely degraded within 18 days of culture. Since type VI collagen is known to be relatively resistant to proteolysis we speculate that the higher level of type VI collagen in articular cartilage is important in protecting cartilage from digestion

    Procollagen Triple Helix Assembly: An Unconventional Chaperone-Assisted Folding Paradigm

    Get PDF
    Fibers composed of type I collagen triple helices form the organic scaffold of bone and many other tissues, yet the energetically preferred conformation of type I collagen at body temperature is a random coil. In fibers, the triple helix is stabilized by neighbors, but how does it fold? The observations reported here reveal surprising features that may represent a new paradigm for folding of marginally stable proteins. We find that human procollagen triple helix spontaneously folds into its native conformation at 30–34°C but not at higher temperatures, even in an environment emulating Endoplasmic Reticulum (ER). ER-like molecular crowding by nonspecific proteins does not affect triple helix folding or aggregation of unfolded chains. Common ER chaperones may prevent aggregation and misfolding of procollagen C-propeptide in their traditional role of binding unfolded polypeptide chains. However, such binding only further destabilizes the triple helix. We argue that folding of the triple helix requires stabilization by preferential binding of chaperones to its folded, native conformation. Based on the triple helix folding temperature measured here and published binding constants, we deduce that HSP47 is likely to do just that. It takes over 20 HSP47 molecules to stabilize a single triple helix at body temperature. The required 50–200 ”M concentration of free HSP47 is not unusual for heat-shock chaperones in ER, but it is 100 times higher than used in reported in vitro experiments, which did not reveal such stabilization

    Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives

    Full text link

    Soil pore system evaluated from gas measurements and CT images: A conceptual study using artificial, natural and 3D-printed soil cores

    No full text
    Combining digital imaging, physical models and laboratory measurements is a step further towards a better understanding of the complex relationships between the soil pore system and soil functions. Eight natural 100-cm3 soil cores were sampled in a cultivated Stagnic Luvisol from the topsoil and subsoil, which we assumed had contrasting pore systems. Artificial 100-cm3 cores were produced from plastic or from autoclaved aerated concrete (AAC). Eight vertical holes of each diameter (1.5 and 3 mm) were drilled for the plastic cylinder and for one of the two AAC cylinders. All natural and artificial cores were scanned in an X-ray CT scanner and printed in 3D. Effective air-filled porosity, true Darcian air permeability, apparent air permeability at a pressure gradient of 5 hPa and oxygen diffusion were measured on all cores. The active pore system characteristics differed between topsoil (sponge-like, network of macropores of similar size) and subsoil (dominated by large vertical macropores). Active soil pore characteristics measured on a simplified pore network, that is, from artificial and printed soil cores, supported the fundamental differences in air transport by convection and diffusion observed between top- and subsoil. The results confirm the suitability of using the conceptual model that partitions the pore system into arterial, marginal and remote pores to describe effects of soil structure on gas transport. This study showed the high potential of using 3D-printed soil cores to reconstruct the soil macropore network for a better understanding of soil pore functions

    Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy

    No full text
    Mutations in the three collagen VI genes COL6A1, COL6A2 and COL6A3 cause Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). UCMD, a severe disorder characterized by congenital muscle weakness, proximal joint contractures and marked distal joint hyperextensibility, has been considered a recessive condition, and homozygous or compound heterozygous mutations have been defined in COL6A2 and COL6A3. In contrast, the milder disorder Bethlem myopathy shows clear dominant inheritance and is caused by heterozygous mutations in COL6A1, COL6A2 and COL6A3. This model, where dominant mutations cause mild Bethlem myopathy and recessive mutations cause severe UCMD was recently challenged when a patient with UCMD was shown to have a heterozygous in-frame deletion in COL6A1. We have studied five patients with a clinical diagnosis of UCMD. Three patients had heterozygous in-frame deletions in the N-terminal region of the triple helical domain, one in the alpha1(VI) chain, one in alpha2(VI) and one in alpha3(VI). Collagen VI protein biosynthesis and assembly studies showed that these mutations act in a dominant negative fashion and result in severe collagen VI matrix deficiencies. One patient had recessive amino acid changes in the C2 subdomain of alpha2(VI), which prevented collagen VI assembly. No collagen VI mutations were found in the fifth patient. These data demonstrate that rather than being a rare cause of UCMD, dominant mutations are common in UCMD, now accounting for four of the 14 published cases. Mutation detection in this disorder remains critical for accurate genetic counseling of patients and their families

    Dominant collagen VI mutations are a common cause of Ullrich congenital muscular dystrophy

    No full text
    Mutations in the three collagen VI genes COL6A1, COL6A2 and COL6A3 cause Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). UCMD, a severe disorder characterized by congenital muscle weakness, proximal joint contractures and marked distal joint hyperextensibility, has been considered a recessive condition, and homozygous or compound heterozygous mutations have been defined in COL6A2 and COL6A3. In contrast, the milder disorder Bethlem myopathy shows clear dominant inheritance and is caused by heterozygous mutations in COL6A1, COL6A2 and COL6A3. This model, where dominant mutations cause mild Bethlem myopathy and recessive mutations cause severe UCMD was recently challenged when a patient with UCMD was shown to have a heterozygous in-frame deletion in COL6A1. We have studied five patients with a clinical diagnosis of UCMD. Three patients had heterozygous in-frame deletions in the N-terminal region of the triple helical domain, one in the alpha1(VI) chain, one in alpha2(VI) and one in alpha3(VI). Collagen VI protein biosynthesis and assembly studies showed that these mutations act in a dominant negative fashion and result in severe collagen VI matrix deficiencies. One patient had recessive amino acid changes in the C2 subdomain of alpha2(VI), which prevented collagen VI assembly. No collagen VI mutations were found in the fifth patient. These data demonstrate that rather than being a rare cause of UCMD, dominant mutations are common in UCMD, now accounting for four of the 14 published cases. Mutation detection in this disorder remains critical for accurate genetic counseling of patients and their families

    Exclusion of biglycan mutations in a cohort of patients with neuromuscular disorders

    No full text
    Copyright © 2008 Elsevier B.V. All rights reserved.Biglycan has been considered a good candidate for neuromuscular disease based on direct interactions with collagen VI and α-dystroglycan, both of which are linked with congenital muscular dystrophy (CMD). We screened 83 patients with CMD and other neuromuscular disorders and six controls for mutations and variations in the biglycan sequence. We identified a number of novel sequence variations. After family analysis and control screening we found that none of these polymorphisms were disease-causing mutations. Thus mutations in biglycan are not a common cause of neuromuscular disorders in our cohort.Rachel A. Peat, Jozef Gécz, Justin R. Fallon, Patrick S. Tarpey, Raffaella Smith, Andrew Futreal, Michael R. Stratton, Shireen R. Lamandé, Nan Yang and Kathryn N. Nort
    • 

    corecore