14,780 research outputs found

    Adaptive Fault Detection on Liquid Propulsion Systems with Virtual Sensors: Algorithms and Architectures

    Get PDF
    Prior to the launch of STS-119 NASA had completed a study of an issue in the flow control valve (FCV) in the Main Propulsion System of the Space Shuttle using an adaptive learning method known as Virtual Sensors. Virtual Sensors are a class of algorithms that estimate the value of a time series given other potentially nonlinearly correlated sensor readings. In the case presented here, the Virtual Sensors algorithm is based on an ensemble learning approach and takes sensor readings and control signals as input to estimate the pressure in a subsystem of the Main Propulsion System. Our results indicate that this method can detect faults in the FCV at the time when they occur. We use the standard deviation of the predictions of the ensemble as a measure of uncertainty in the estimate. This uncertainty estimate was crucial to understanding the nature and magnitude of transient characteristics during startup of the engine. This paper overviews the Virtual Sensors algorithm and discusses results on a comprehensive set of Shuttle missions and also discusses the architecture necessary for deploying such algorithms in a real-time, closed-loop system or a human-in-the-loop monitoring system. These results were presented at a Flight Readiness Review of the Space Shuttle in early 2009

    Development of food photographs for use with children aged 18 months to 16 years:comparison against weighed food diaries – The Young Person’s Food Atlas (UK)

    Get PDF
    Traditional dietary assessment methods, used in the UK, such as weighed food diaries impose a large participant burden, often resulting in difficulty recruiting representative samples and underreporting of energy intakes. One approach to reducing the burden placed on the participant is to use portion size assessment tools to obtain an estimate of the amount of food consumed, removing the need to weigh all foods. An age range specific food atlas was developed for use in assessing children’s dietary intakes. The foods selected and portion sizes depicted were derived from intakes recorded during the UK National Diet and Nutrition Surveys of children aged 1.5 to 16 years. Estimates of food portion sizes using the food atlas were compared against 4-day weighed intakes along with in-school / nursery observations, by the research team. Interviews were conducted with parents the day after completion of the diary, and for children aged 4 to 16 years, also with the child. Mean estimates of portion size consumed were within 7% of the weight of food recorded in the weighed food diary. The limits of agreement were wide indicating high variability of estimates at the individual level but the precision increased with increasing age. For children 11 years and over, agreement with weighed food diaries, was as good as that of their parents in terms of total weight of food consumed and of intake of energy and key nutrients. The age appropriate food photographs offer an alternative to weighed intakes for dietary assessment with children

    Discrete models of dislocations and their motion in cubic crystals

    Get PDF
    A discrete model describing defects in crystal lattices and having the standard linear anisotropic elasticity as its continuum limit is proposed. The main ingredients entering the model are the elastic stiffness constants of the material and a dimensionless periodic function that restores the translation invariance of the crystal and influences the Peierls stress. Explicit expressions are given for crystals with cubic symmetry: sc, fcc and bcc. Numerical simulations of this model with conservative or damped dynamics illustrate static and moving edge and screw dislocations and describe their cores and profiles. Dislocation loops and dipoles are also numerically observed. Cracks can be created and propagated by applying a sufficient load to a dipole formed by two edge dislocations.Comment: 23 pages, 15 figures, to appear in Phys. Rev.

    Universal zero-bias conductance for the single electron transistor. II: Comparison with numerical results

    Full text link
    A numerical renormalization-group survey of the zero-bias electrical conductance through a quantum dot embedded in the conduction path of a nanodevice is reported. The results are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model. A gate potential applied to the conduction electrons is known to change markedly the transport properties of a quantum dot side-coupled to the conduction path; in the embedded geometry here discussed, a similar potential is shown to affect only quantitatively the temperature dependence of the conductance. As expected, in the Kondo regime the numerical results are in excellent agreement with the mapped conductances. In the mixed-valence regime, the mapping describes accurately the low-temperature tail of the conductance. The mapping is shown to provide a unified view of conduction in the single-electron transistor.Comment: Sequel to arXiv:0906.4063. 9 pages with 8 figure

    Coherent Time Evolution and Boundary Conditions of Two-Photon Quantum Walks

    Full text link
    Multi-photon quantum walks in integrated optics are an attractive controlled quantum system, that can mimic less readily accessible quantum systems and exhibit behavior that cannot in general be accurately replicated by classical light without an exponential overhead in resources. The ability to observe time evolution of such systems is important for characterising multi-particle quantum dynamics---notably this includes the effects of boundary conditions for walks in spaces of finite size. Here we demonstrate the coherent evolution of quantum walks of two indistinguishable photons using planar arrays of 21 evanescently coupled waveguides fabricated in silicon oxynitride technology. We compare three time evolutions, that follow closely a model assuming unitary evolution, corresponding to three different lengths of the array---in each case we observe quantum interference features that violate classical predictions. The longest array includes reflecting boundary conditions.Comment: 7 pages,7 figure
    • …
    corecore