168 research outputs found

    Inclination effects on the X-ray emission of Galactic black-hole binaries

    Full text link
    Galactic black-hole X-ray binaries (BHBs) emit a compact, optically thick, mildly relativistic radio jet when they are in the hard and hard-intermediate states. In these states, BHBs exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the power law component that characterizes the X-ray spectral continuum above ∼\sim 10 keV. The correlation, however, shows large scatter. Our objective is to investigate the role that the inclination of the system plays on the correlation between the time lag and the photon index. We find that the correlation between the time lag and the photon index is tight in low-inclination systems and becomes weaker in high-inclination systems. The amplitude of the lags is also larger at low and intermediate inclination angles than at high inclination. Our jet model that reproduces the process of Comptonization in an extended jet can account for the observations remarkably well

    The time-lag -- photon-index correlation in GX 339--4

    Full text link
    Black-hole transients exhibit a correlation between the time lag of hard photons with respect to softer ones and the photon index of the hard X-ray power law. The correlation is not very tight and therefore it is necessary to examine it source by source. The objective of the present work is to investigate in detail the time-lag -- photon-index correlation in GX 339-4. We have obtained RXTE energy spectra and light curves and have computed the photon index and the time lag of the 9−159 - 15 keV photons with respect to the 2−62 - 6 keV ones. The observations cover the first stages of the hard state, the pure hard state, and the hard-intermediate state. At low Γ\Gamma, the correlation is positive and it becomes negative at large Γ\Gamma. By assuming that the hard X-ray power law index Γ\Gamma is produced by inverse Compton scattering of soft disk photons in the jet, we have reproduced the entire correlation by varying two parameters in the jet: the radius of the jet at its base R0R_0 and the Thomson optical depth along the jet τ∥\tau_\parallel. We have found that, as the luminosity of the source increases, R0R_0 initially increases and then decreases. This behavior is expected in the context of the Cosmic Battery. As a further test of our model, we predict the break frequency in the radio spectrum as a function of the photon index during the rising part of an outburst

    Aperiodic variability of low-mass X-ray binaries at very low frequencies

    Get PDF
    We have obtained discrete Fourier power spectra of a sample of persistent low-mass neutron-star X-ray binaries using long-term light curves from the All Sky Monitor on board the Rossi X-ray Timing Explorer. Our aim is to investigate their aperiodic variability at frequencies in the range 1 x 10^{-7}-5 x 10^{-6} Hz and compare their properties with those of the black-hole source Cyg X-1. We find that the classification scheme that divides LMXBs into Z and atoll sources blurs at very low frequencies. Based on the long-term (~ years) pattern of variability and the results of power-law fits (P ~ v^{-a}) to the 1 x 10^{-7}-5 x 10^{-6} Hz power density spectra, low-mass neutron-star binaries fall into three categories. Type I includes all Z sources, except Cyg X-2, and the atoll sources GX9+1 and GX13+1. They show relatively flat power spectra (a < 0.9) and low variability (rms < 20%). Type II systems comprise 4U 1636-53, 4U 1735-44 and GX3+1. They are more variable (20% < rms < 30%) and display steeper power spectra (0.9 < a < 1.2) than Type I sources. Type III systems are the most variable (rms > 30%) and exhibit the steepest power spectra (a > 1.2). The sources 4U 1705-44, GX354-0 and 4U 1820-30 belong to this group. GX9+9 and Cyg X-2 appear as intermediate systems in between Type I and II and Type II and III sources, respectively. We speculate that the differences in these systems may be caused by the presence of different types of mass-donor companions. Other factors, like the size of the accretion disc and/or the presence of weak magnetic fields, are also expected to affect their low-frequency X-ray aperiodic varibility.Comment: 9 pages, 6 figures. To be published in A&

    Broad-band X-ray spectra of anomalous X-ray pulsars and soft γ\gamma-ray repeaters: pulsars in a weak-accretion regime ?

    Full text link
    We present the results from the analysis of the broad-band X-ray spectra of 5 Anomalous X-ray Pulsars (AXPs) and Soft γ\gamma-ray Repeaters (SGRs). We fit their Suzaku and INTEGRAL spectra with models appropriate for the X-ray emission from the accretion flow onto a pulsar. We find that their X-ray spectra can be well described with this model. In particular we find that: (a) the radius of the accretion column is ∼150−350\sim150-350 m resulting in a transverse optical depth of ∼1\sim 1; (b) the vertical Thompson optical depth is ≈50−400\approx 50-400, and (c) their luminosity translates in accretion rates ≈1015g s−1\approx10^{15}\rm{g\, s^{-1}}. These results are in good agreement with the predictions from the fall-back disk model, providing further support in the interpretation of AXPs and SGRs as accreting pulsars.Comment: Accepted for publication in MNRAS, 10 pages, 2 figure

    Is the Galactic submillimeter dust emissivity underestimated?

    Full text link
    We present detailed modeling of the spectral energy distribution (SED) of the spiral galaxies NGC 891, NGC 4013, and NGC 5907 in the far-infrared and submm wavelengths. The model takes into account the emission produced by the diffuse dust and the star forming HII complexes. The dust mass is constrained by radiative transfer simulations in the optical (Xilouris et al. 1999). We find that the submm emission predicted by our model cannot account for the observed fluxes. Two scenarios may account for the "missing" submm flux. In the first scenario (Popescu et al. 2000), additional dust (to that derived from the optical, and associated with young stars) is embedded in the galaxy in the form of a thin disk and gives rise to additional submm emission. The other scenario investigates whether the average submm emissivity of the dust grains is higher than the values widely used in Galactic environments. In this case, the dust mass is equal to that derived from the optical observations, and the submm emissivity is treated as a free parameter calculated by fitting our model to the observed SED. We find the submm emissivity value to be ~3 times that often used for our Galaxy. While both scenarios reproduce the observed 850 micron surface brightness, the extra embedded dust model is not supported by the near infrared observations. We, thus, find that the enhanced dust submm emissivity scenario is the most plausible. [abridged]Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore