1,118 research outputs found

    First Detection of Ar-K Line Emission from the Cygnus Loop

    Full text link
    We observed the Cygnus Loop with XMM-Newton (9 pointings) and Suzaku (32 pointings) between 2002 and 2008. The total effective exposure time is 670.2 ks. By using all of the available data, we intended to improve a signal-to-noise ratio of the spectrum. Accordingly, the accumulated spectra obtained by the XIS and the EPIC show some line features around 3 keV that are attributed to the S Heβ\beta and Ar Heα\alpha lines, respectively. Since the Cygnus Loop is an evolved (\sim10,000 yr) supernova remnant whose temperature is relatively low (<<1 keV) compared with other young remnants, its spectrum is generally faint above 3.0 keV, no emission lines, such as the Ar-K line have ever been detected. The detection of the Ar-K line is the first time and we found that its abundance is significantly higher than that of the solar value; 9.03.8+4.0^{+4.0}_{-3.8} and 8.42.7+2.5^{+2.5}_{-2.7} (in units of solar), estimated from the XIS and the EPIC spectra, respectively. We conclude that the Ar-K line originated from the ejecta of the Cygnus Loop. Follow-up X-ray observations to tightly constrain the abundances of Ar-rich ejecta will be useful to accurately estimate the progenitor's mass.Comment: 12 pages, 9 figures, accepted for publication in PAS

    Core excitation in Ozone localized to one of two symmetry-equivalent chemical bonds - molecular alignment through vibronic coupling

    Full text link
    Core excitation from terminal oxygen OT_T in O3_3 is shown to be an excitation from a localized core orbital to a localized valence orbital. The valence orbital is localized to one of the two equivalent chemical bonds. We experimentally demonstrate this with the Auger Doppler effect which is observable when O3_3 is core-excited to the highly dissociative OT_{T}1s1^{-1}7a11_1^1 state. Auger electrons emitted from the atomic oxygen fragment carry information about the molecular orientation relative to the electromagnetic field vector at the moment of excitation. The data together with analytical functions for the electron-peak profiles give clear evidence that the preferred molecular orientation for excitation only depends on the orientation of one bond, not on the total molecular orientation. The localization of the valence orbital "7a1_1" is caused by mixing of the valence orbital "5b2_2" through vibronic coupling of anti-symmetric stretching mode with b2_2-symmetry. To the best of our knowledge, it is the first discussion of the localization of a core excitation of O3_3. This result explains the success of the widely used assumption of localized core excitation in adsorbates and large molecules

    On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329

    Full text link
    The net optical light curves and spectra of the supernova (SN) 2003dh are obtained from the published spectra of GRB 030329, covering about 6 days before SN maximum to about 60 days after. The bulk of the U-band flux is subtracted from the observed spectra using early-time afterglow templates, because strong line blanketing greatly depresses the UV and U-band SN flux in a metal-rich, fast-moving SN atmosphere. The blue-end spectra of the gamma-ray burst (GRB)connected hypernova SN 1998bw is used to determine the amount of subtraction. The subtraction of a host galaxy template affects the late-time results. The derived SN 2003dh light curves are narrower than those of SN 1998bw, rising as fast before maximum, reaching a possibly fainter maximum, and then declining ~ 1.2-1.4 times faster. We then build UVOIR bolometric SN light curve. Allowing for uncertainties, it can be reproduced with a spherical ejecta model of Mej ~ 7+/-3 Msun, KE ~ (3.5+/-1.5)E52 ergs, with KE/Mej ~ 5 following previous spectrum modelling, and M(Ni56) ~ (0.4 +0.15/-0.1) Msun. This suggests a progenitor main-sequence mass of about 25-40 Msun, lower than SN 1998bw but significantly higher than normal Type Ic SNe and the GRB-unrelated hypernova SN 2002ap.Comment: 18 pages, 7 figures, published by Ap

    Multi-wavelength analysis of the field of the dark burst GRB 031220

    Full text link
    We have collected and analyzed data taken in different spectral bands (from X-ray to optical and infrared) of the field of GRB031220 and we present results of such multiband observations. Comparison between images taken at different epochs in the same filters did not reveal any strong variable source in the field of this burst. X-ray analysis shows that only two of the seven Chandra sources have a significant flux decrease and seem to be the most likely afterglow candidates. Both sources do not show the typical values of the R-K colour but they appear to be redder. However, only one source has an X-ray decay index (1.3 +/- 0.1) that is typical for observed afterglows. We assume that this source is the best afterglow candidate and we estimate a redshift of 1.90 +/- 0.30. Photometric analysis and redshift estimation for this object suggest that this GRB can be classified as a Dark Burst and that the obscuration is the result of dust extinction in the circum burst medium or inside the host galaxy.Comment: 7 pages, 5 figures, accepted for publication on A&

    The sub-arcsecond hard X-ray structure of loop footpoints in a solar flare

    Full text link
    The newly developed X-ray visibility forward fitting technique is applied to Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data of a limb flare to investigate the energy and height dependence on sizes, shapes, and position of hard X-ray chromospheric footpoint sources. This provides information about the electron transport and chromospheric density structure. The spatial distribution of two footpoint X-ray sources is analyzed using PIXON, Maximum Entropy Method, CLEAN and visibility forward fit algorithms at nonthermal energies from 20\sim 20 to 200\sim 200 keV. We report, for the first time, the vertical extents and widths of hard X-ray chromospheric sources measured as a function of energy for a limb event. Our observations suggest that both the vertical and horizontal sizes of footpoints are decreasing with energy. Higher energy emission originates progressively deeper in the chromosphere consistent with downward flare accelerated streaming electrons. The ellipticity of the footpoints grows with energy from 0.5\sim 0.5 at 20 \sim 20 keV to 0.9\sim 0.9 at 150\sim 150 keV. The positions of X-ray emission are in agreement with an exponential density profile of scale height 150\sim 150~km. The characteristic size of the hard X-ray footpoint source along the limb is decreasing with energy suggesting a converging magnetic field in the footpoint. The vertical sizes of X-ray sources are inconsistent with simple collisional transport in a single density scale height but can be explained using a multi-threaded density structure in the chromosphere.Comment: 7 pages, 7 figures, submitted to Ap

    Asymmetric Field Profile in Bose Glass Phase of Irradiated YBa2Cu3O7-d: Loss of Interlayer Coherence around 1/3 of Matching Field

    Full text link
    Magneto-optical imaging in YBa2Cu3O7-d with tilted columnar defects (CD's) shows an asymmetric critical-state field profile. The observed hysteretic shift of the profile ridge (trough) from the center of the sample is explained by in-plane magnetization originated from vortex alignment along CD's. The extracted ratio of the in-plane to out-of-plane magnetization component has a maximum at 1/5 of matching field (BΦB_\Phi) and disappears above BΦ/3B_\Phi/3, suggesting a reduction of interlayer coherence well bellow BΦB_\Phi in the Bose glass phase. Implications are discussed in comparison with the vortex liquid recoupling observed in irradiated Bi2Sr2CaCu2O8+y.Comment: Revtex, 4 pages, 5 figures, also see a movie at (http://www.ap6.t.u-tokyo.ac.jp/kitaka/Research/d-line/index_e.htm). This manuscript will appear in Phys. Rev. Let

    Positions and sizes of X-ray solar flare sources

    Get PDF
    &lt;p&gt;&lt;b&gt;Aims:&lt;/b&gt; The positions and source sizes of X-ray sources taking into account Compton backscattering (albedo) are investigated.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods:&lt;/b&gt; Using a Monte Carlo simulation of X-ray photon transport including photo-electric absorption and Compton scattering, we calculate the apparent source sizes and positions of X-ray sources at the solar disk for various source sizes, spectral indices and directivities of the primary source.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results:&lt;/b&gt; We show that the albedo effect can alter the true source positions and substantially increase the measured source sizes. The source positions are shifted by up to ~0.5” radially towards the disk centre and 5 arcsec source sizes can be two times larger even for an isotropic source (minimum albedo effect) at 1 Mm above the photosphere. The X-ray sources therefore should have minimum observed sizes, and thus their FWHM source size (2.35 times second-moment) will be as large as ~7” in the 20-50 keV range for a disk-centered point source at a height of 1 Mm (~1.4”) above the photosphere. The source size and position change is greater for flatter primary X-ray spectra, a stronger downward anisotropy, for sources closer to the solar disk centre, and between the energies of 30 and 50 keV.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions:&lt;/b&gt; Albedo should be taken into account when X-ray footpoint positions, footpoint motions or source sizes from e.g. RHESSI or Yohkoh data are interpreted, and we suggest that footpoint sources should be larger in X-rays than in either optical or EUV ranges.&lt;/p&gt

    Subaru Spectroscopy of the Gravitational Lens HST 14176+5226: Implications for a Large Cosmological Constan

    Get PDF
    We present new optical spectroscopy of the lens elliptical galax in the ``Einstein Cross'' lens system HST 14176+5226, using the Faint Object Camera and Spectrograph (FOCAS) of the Subaru t Our spectroscopic observations are aimed at measuring the stella dispersion of the lens galaxy, located at high redshift of z_L= as an important component to lens models. We have measured this 230 +- 14 km s^{-1} (1 sigma) inside 0.35 effective radi based on the comparison between the observed galaxy spectrum and templates of three G-K giants by means of the Fourier cross-corr To extract the significance of this information on the geometry universe which also affects the lensing of the background image, to fit three different lens models to the available data of the Provided that the lens galaxy has the structural and dynamical p (i.e., its radial density profile, core radius, and velocity ani similar to those of local elliptical galaxies, we calculate the function for the simultaneous reproduction of both the observed and newly measured velocity dispersion of the lens. Although the interval depends rather sensitively on the adopted lens models o parameters, our experiments suggest the larger likelihood for a cosmological constant, Omega_Lambda: formal 1 sigma lower Omega_Lambda in the flat universe ranges 0.73 to 0.97, where lower limit is basically unavailable. This method for determinin model is thus dependent on lens models but is insensitive to oth ambiguities, such as the dust absorption or the evolutionary eff galaxies. Exploring spectroscopic observations of more lens gala redshift may minimize the model uncertainties and thus place a m constraint on Omega_Lambda.Comment: 23 pages, 5 figures, accepted for publication in The Astronomical Journa
    corecore