42 research outputs found
The converter for television reception in the 40 GHz frequency range
The paper describes the results of developing and testing the pilot batch of converters of the millimeter wavelength range designed for television reception. The converter is made based on the hybrid integrated technology and ensures Kn <= 7.2dB and Ktr >= 34 dB in the 40 GHz range
Synthesis and thermomechanical properties of hybrid photopolymer films based on the thiol-siloxane and acrylate oligomers
The synthesis of hybrid oligomers for photopolymer compositions was carried out based on the thiol-ene reaction between the tetraacrylate dihydroxydiphenylsulfide derivative and thiol-siloxane oligomer. Thiol-siloxane oligomer was synthesized by condensation of diphenylsilanediol and 3-(mercaptopropyl)-trimethoxysilane. The thiol-siloxane oligomer structure was identified by 1H, 13C, 29Si NMR spectroscopy including COSY, HSQC, and HMBC methods and by MALDI-TOF mass spectrometry. The hybrid oligomers were obtained at different tetraacrylate:thiol-siloxane oligomer ratios (1:2, 1:1, 2:1). The obtained compositions are resistant to the oxygen inhibition of photopolymerization and give flexible, thermostable, and rigid polymer films under UV light at air atmosphere. The degree of the film photopolymerization was monitored by IR spectroscopy. The thermomechanical properties of photopolymer films were determined using thermogravimetric, differential scanning calorimetric, and dynamic mechanical analyses. The storage modulus (E′) at room temperature (1.16–1.88 GPa) and the glass transition temperatures (78–133 °C) were determined for photopolymer films obtained at different ratios of acrylate and thiol-siloxane units. The photocured hybrid films exhibit high stability to thermal decomposition in the inert (T10% over 321 °C) and oxidizing (T10% over 314 °C) atmospheres
Synthesis and thermomechanical properties of hybrid photopolymer films based on the thiol-siloxane and acrylate oligomers
The synthesis of hybrid oligomers for photopolymer compositions was carried out based on the thiol-ene reaction between the tetraacrylate dihydroxydiphenylsulfide derivative and thiol-siloxane oligomer. Thiol-siloxane oligomer was synthesized by condensation of diphenylsilanediol and 3-(mercaptopropyl)-trimethoxysilane. The thiol-siloxane oligomer structure was identified by 1H, 13C, 29Si NMR spectroscopy including COSY, HSQC, and HMBC methods and by MALDI-TOF mass spectrometry. The hybrid oligomers were obtained at different tetraacrylate:thiol-siloxane oligomer ratios (1:2, 1:1, 2:1). The obtained compositions are resistant to the oxygen inhibition of photopolymerization and give flexible, thermostable, and rigid polymer films under UV light at air atmosphere. The degree of the film photopolymerization was monitored by IR spectroscopy. The thermomechanical properties of photopolymer films were determined using thermogravimetric, differential scanning calorimetric, and dynamic mechanical analyses. The storage modulus (E′) at room temperature (1.16–1.88 GPa) and the glass transition temperatures (78–133 °C) were determined for photopolymer films obtained at different ratios of acrylate and thiol-siloxane units. The photocured hybrid films exhibit high stability to thermal decomposition in the inert (T10% over 321 °C) and oxidizing (T10% over 314 °C) atmospheres