248 research outputs found

    ΠŸΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠΉ синтСз, ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ– характСристики Ρ‚Π° просторова Π±ΡƒΠ΄ΠΎΠ²Π° Π΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ СстСру 2-гідрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-4Н-ΠΏΡ–Ρ€ΠΈΠ΄ΠΎ[1,2-Π°]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти

    Get PDF
    The improved method for obtaining ethyl 2-hydroxy-8-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylate being of interest as a base for synthesis of antiviral medicines has been suggested. The method involves a gradual addition of the solution of 2-amino-4-methylpyridine in triethylmethanetricarboxylate used as an acylating and condensing agent, as well as a high boiling heating agent simultaneously in the excess of triethylmethanetricarboxylate preheated to 150Β°C. This modification allows not only to reduce considerably regeneration of triethylmethanetricarboxylate taken in excess, but practically to avoid completely the undesirable formation of by-product – 2-hydroxy-8-methyl-N-(4-methypyridin-2-yl)-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxamide. It has been found by X-ray diffraction analysis that in the crystal the ethyl 2-hydroxy-8-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidine-3-carboxylate synthesized exists in the zwitterionic form with localization of the positive charge at the protonated nitrogen atom and the negative charge at the carbon atom in position 3 of the pyridopyrimidine ring. Based on the study of NMR 1H and 13C spectra the assumption that the test compound exits as an equilibrium mixture of two tautomeric forms in solution has been expressed.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½Π½Ρ‹ΠΉ способ получСния этилового эфира 2-гидрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-4Н-ΠΏΠΈΡ€ΠΈΠ΄ΠΎ[1,2-Π°] ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ интСрСс ΠΊΠ°ΠΊ основа для синтСза противовирусных лСкарствСнных срСдств. ΠœΠ΅Ρ‚ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² постСпСнном ΠΏΡ€ΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΠΈ Π² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°Π³Ρ€Π΅Ρ‚Ρ‹ΠΉ Π΄ΠΎ 150Β°Π‘ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΠΊ триэтил-мСтантрикарбоксилата раствора 2-Π°ΠΌΠΈΠ½ΠΎ-4-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ½Π° Π² триэтил-ΠΌΠ΅Ρ‚Π°Π½Ρ‚Ρ€ΠΈ-карбоксилатС, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠΎΠΌ Π² качСствС Π°Ρ†ΠΈΠ»ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΈ ΠΊΠΎΠ½Π΄Π΅Π½ΡΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π°Π³Π΅Π½Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ высококипящСго тСплоноситСля ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ. Вакая модификация позволяСт Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΡŽ взятого Π² ΠΈΠ·Π±Ρ‹Ρ‚ΠΊΠ΅ триэтилмСтантри-карбоксилата, Π½ΠΎ ΠΈ практичСски ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π΅ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ образования ΠΏΠΎΠ±ΠΎΡ‡Π½ΠΎΠ³ΠΎ 2-гидрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-N-(4-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΏΠΈΡ€ΠΈΠ΄ΠΈΠ½-2-ΠΈΠ»)-4Н-ΠΏΠΈΡ€ΠΈΠ΄ΠΎ[1,2-Π°]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-3-карбоксамида. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ рСнтгСноструктурного Π°Π½Π°Π»ΠΈΠ·Π° установлСно, Ρ‡Ρ‚ΠΎ Π² кристаллС синтСзированный этиловый эфир 2-гидрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-4Н-ΠΏΠΈΡ€ΠΈΠ΄ΠΎ[1,2-Π°]ΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΠΉ кислоты сущСствуСт Π² Ρ†Π²ΠΈΡ‚Ρ‚Π΅Ρ€-ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ с Π»ΠΎΠΊΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ заряда Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ Π°Ρ‚ΠΎΠΌΠ΅ Π°Π·ΠΎΡ‚Π° ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ заряда Π½Π° Π°Ρ‚ΠΎΠΌΠ΅ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π° Π² ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠΈ 3 ΠΏΠΈΡ€ΠΈΠ΄ΠΎΠΏΠΈΡ€ΠΈΠΌΠΈΠ΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ядра. На основании изучСния спСктров ЯМР 1Н ΠΈ 13Π‘ высказано ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ исслСдуСмоС соСдинСниС ΠΈ Π² растворС сущСствуСт Π² Π²ΠΈΠ΄Π΅ равновСсной смСси Π΄Π²ΡƒΡ… Ρ‚Π°ΡƒΡ‚ΠΎΠΌΠ΅Ρ€Π½Ρ‹Ρ… Ρ„ΠΎΡ€ΠΌ.Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΏΠΎΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠΉ спосіб одСрТання Π΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΎΠ³ΠΎ СстСру 2-гідрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-4Н-ΠΏΡ–Ρ€ΠΈΠ΄ΠΎ [1,2-Π°]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти, який прСдставляє інтСрСс як основа для синтСзу противірусних Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΠΈΡ… засобів. ΠœΠ΅Ρ‚ΠΎΠ΄ полягає Ρƒ поступовому Π΄ΠΎΠ΄Π°Π²Π°Π½Π½Ρ– Π² ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΡŒΠΎ Π½Π°Π³Ρ€Ρ–Ρ‚ΠΈΠΉ Π΄ΠΎ 150Β°Π‘ надлишок триСтилмСтантрикарбоксилату Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ 2-Π°ΠΌΡ–Π½ΠΎ-4-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΏΡ–Ρ€ΠΈΠ΄ΠΈΠ½Ρƒ Π² триСтилмСтантрикарбоксилаті, Ρ‰ΠΎ Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡ”Ρ‚ΡŒΡΡ як Π°Ρ†ΠΈΠ»ΡƒΡŽΡ‡ΠΈΠΉ Ρ‚Π° ΠΊΠΎΠ½Π΄Π΅Π½ΡΡƒΡŽΡ‡ΠΈΠΉ Π°Π³Π΅Π½Ρ‚, Π° Ρ‚Π°ΠΊΠΎΠΆ як висококиплячий тСплоносій одночасно. Π’Π°ΠΊΠ° модифікація дозволяє Π½Π΅ Ρ‚Ρ–Π»ΡŒΠΊΠΈ Π·Π½Π°Ρ‡Π½ΠΎ спростити Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†Ρ–ΡŽ взятого Ρƒ Π½Π°Π΄Π»ΠΈΡˆΠΊΡƒ триСтилмСтантрикарбоксилату, Π°Π»Π΅ ΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½ΠΎ ΠΏΠΎΠ²Π½Ρ–ΡΡ‚ΡŽ ΡƒΠ½ΠΈΠΊΠ½ΡƒΡ‚ΠΈ Π½Π΅Π±Π°ΠΆΠ°Π½ΠΎΠ³ΠΎ утворСння ΠΏΠΎΠ±Ρ–Ρ‡Π½ΠΎΠ³ΠΎ 2-гідрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-N-(4-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΏΡ–Ρ€ΠΈΠ΄ΠΈΠ½-2-Ρ–Π»)-4Н-ΠΏΡ–Ρ€ΠΈΠ΄ΠΎ[1,2-Π°]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-3-карбоксаміду. Π—Π° допомогою рСнтгСноструктурного Π°Π½Π°Π»Ρ–Π·Ρƒ встановлСно, Ρ‰ΠΎ Π² кристалі синтСзований Π΅Ρ‚ΠΈΠ»ΠΎΠ²ΠΈΠΉ СстСр 2-гідрокси-8-ΠΌΠ΅Ρ‚ΠΈΠ»-4-оксо-4Н-ΠΏΡ–Ρ€ΠΈΠ΄ΠΎ[1,2-Π°]ΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΎΠ²ΠΎΡ— кислоти існує Ρƒ Ρ†Π²Ρ–Ρ‚Ρ‚Π΅Ρ€-Ρ–ΠΎΠ½Π½Ρ–ΠΉ Ρ„ΠΎΡ€ΠΌΡ– Π· Π»ΠΎΠΊΠ°Π»Ρ–Π·Π°Ρ†Ρ–Ρ”ΡŽ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ заряду Π½Π° ΠΏΡ€ΠΎΡ‚ΠΎΠ½ΠΎΠ²Π°Π½ΠΎΠΌΡƒ Π°Ρ‚ΠΎΠΌΡ– Π½Ρ–Ρ‚Ρ€ΠΎΠ³Π΅Π½Ρƒ Ρ– Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ заряду Π½Π° Π°Ρ‚ΠΎΠΌΡ– ΠΊΠ°Ρ€Π±ΠΎΠ½Ρƒ Ρƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½Ρ– 3 ΠΏΡ–Ρ€ΠΈΠ΄ΠΎΠΏΡ–Ρ€ΠΈΠΌΡ–Π΄ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ядра. На основі вивчСння спСктрів ЯМР 1Н Ρ‚Π° 13Π‘ Π·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ припущСння, Ρ‰ΠΎ дослідТувана сполука Ρ– Π² Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ– існує Ρƒ вигляді Ρ€Ρ–Π²Π½ΠΎΠ²Π°ΠΆΠ½ΠΎΡ— ΡΡƒΠΌΡ–ΡˆΡ– Π΄Π²ΠΎΡ… Ρ‚Π°ΡƒΡ‚ΠΎΠΌΠ΅Ρ€Π½ΠΈΡ… Ρ„ΠΎΡ€ΠΌ

    Observation of a narrow baryon resonance with positive strangeness formed in K+K^+Xe collisions

    Get PDF
    The charge-exchange reaction K^+ Xe --> K^0 p Xe' is investigated using the data of the DIANA experiment. The distribution of the pK^0 effective mass shows a prominent enhancement near 1538 MeV formed by \sim 80 events above the background, whose width is consistent with being entirely due to the experimental resolution. Under the selections based on a simulation of K^+Xe collisions, the statistical significance of the signal reaches 5.5\sigma. We interpret this observation as strong evidence for formation of a pentaquark baryon with positive strangeness, \Theta^+(uudd\bar{s}), in the charge-exchange reaction K^+ n --> K^0 p on a bound neutron. The mass of the \Theta^+ baryon is measured as m(\Theta^+) = 1538+-2 MeV. Using the ratio between the numbers of resonant and non-resonant charge-exchange events in the peak region, the intrinsic width of this baryon resonance is determined as \Gamma(\Theta^+) = 0.34+-0.10 MeV.Comment: 19 pages, 8 figure

    Observation of a baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    The status of our investigation of low-energy K+K^+Xe collisions in the Xenon bubble chamber DIANA is reported. In the charge-exchange reaction K+Xeβ†’K0pXeβ€²K^+Xe \to K^0 p Xe' the spectrum of K0pK^0 p effective mass shows a resonant enhancement with M=1539Β±2M = 1539 \pm 2 MeV/c2^2 and Γ≀9MeV/c\Gamma \le 9 MeV/c^2.Thestatisticalsignificanceoftheenhancementisnear. The statistical significance of the enhancement is near 4.4\sigma$. The mass and width of the observed resonance are consistent with expectations for the lightest member of the anti-decuplet of exotic pentaquark baryons, as predicted in the framework of the chiral soliton model.Comment: 9 pages, 4 figure

    Single spin asymmetry measurements for Ο€0\pi^0 inclusive productions in p+p↑→π0+Xp+p_{\uparrow} \to \pi^0 + X and \pi^-+\p_{\uparrow}\to \pi^0+X reactions at 70 and 40 GeV respectively

    Full text link
    The inclusive Ο€0\pi^0 asymmetries were measured in reactions p+p↑→π0+Xp+p\uparrow \to \pi^0+X and Ο€βˆ’+p↑→π0+X\pi^-+p\uparrow \to \pi^0+X at 70 and 40 GeV/c respectively. The measurements were made at the central region (for the first reaction) and asymmetry is compatible with zero in the entire measured pTp_T region. For the second reaction the asymmetry is zero for small xFx_F region (βˆ’0.4<xF<βˆ’0.1,0.5<pT(GeV/c)<1.5-0.4<x_F<-0.1, 0.5<p_T(GeV/c) <1.5) and increases with growth of ∣xF∣\mid x_F\mid. Averaged over the interval βˆ’0.8<xF<βˆ’0.4,1<pT(GeV/c)<2-0.8<x_F<-0.4, 1<p_T(GeV/c)<2 the asymmetry was βˆ’(13.8Β±3.8)-(13.8\pm 3.8)%.Comment: 4 pages, 2 figures; Presented at SPIN-2004 at Trieste, October 10-16,200

    Further evidence for formation of a narrow baryon resonance with positive strangeness in K+ collisions with Xe nuclei

    Full text link
    We have continued our investigation of the charge-exchange reaction K^+ Xe --> K^0 p Xe' in the bubble chamber DIANA. In agreement with our previous results based on part of the present statistics, formation of a narrow p K^0 resonance with mass of 1537+-2 MeV/c^2 is observed in the elementary transition K^+ n --> K^0 p on a neutron bound in the Xenon nucleus. Visible width of the peak is consistent with being entirely due to instrumental resolution and allows to place an upper limit on its intrinsic width: \Gamma < 9 MeV/c^2. A more precise estimate of the resonance intrinsic width, \Gamma = 0.36+-0.11 MeV/c^2, is obtained from the ratio between the numbers of resonant and non-resonant charge-exchange events. The signal is observed in a restricted interval of incident K^+ momentum, that is consistent with smearing of a narrow p K^0 resonance by Fermi motion of the target neutron. Statistical significance of the signal is some 7.3, 5.3, and 4.3 standard deviations for the estimators S/sqrt{B}, S/sqrt{S+B}, and S/sqrt{S+2B}, respectively. This observation confirms and reinforces our earlier results, and offers strong evidence for formation of a pentaquark baryon with positive strangeness in the charge-exchange reaction K^+ n --> K^0 p on a bound neutron.Comment: 13 pages, 8 figures, some chenges in text and references, more precise estimate of Theta(1540) to add, submitted to Phys.Atom.Nucl(Yad.Fiz.
    • …
    corecore