4,961 research outputs found

    Admit your weakness: Verifying correctness on TSO architectures

    Get PDF
    “The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-15317-9_22 ”.Linearizability has become the standard correctness criterion for fine-grained non-atomic concurrent algorithms, however, most approaches assume a sequentially consistent memory model, which is not always realised in practice. In this paper we study the correctness of concurrent algorithms on a weak memory model: the TSO (Total Store Order) memory model, which is commonly implemented by multicore architectures. Here, linearizability is often too strict, and hence, we prove a weaker criterion, quiescent consistency instead. Like linearizability, quiescent consistency is compositional making it an ideal correctness criterion in a component-based context. We demonstrate how to model a typical concurrent algorithm, seqlock, and prove it quiescent consistent using a simulation-based approach. Previous approaches to proving correctness on TSO architectures have been based on linearizabilty which makes it necessary to modify the algorithm’s high-level requirements. Our approach is the first, to our knowledge, for proving correctness without the need for such a modification

    Where is the jet quenching in Pb+Pb collisions at 158 AGeV?

    Full text link
    Because of the rapidly falling particle spectrum at large pTp_T from jet fragmentation at the CERN SPS energy, the high-pTp_T hadron distribution should be highly sensitive to parton energy loss inside a dense medium as predicted by recent perturbative QCD (pQCD) studies. A careful analysis of recent data from CERN SPS experiments via pQCD calculation shows little evidence of energy loss. This implies that either the life-time of the dense partonic matter is very short or one has to re-think about the problem of parton energy loss in dense matter. The hadronic matter does not seem to cause jet quenching in Pb+PbPb+Pb collisions at the CERN SPS. High-pTp_T two particle correlation in the azimuthal angle is proposed to further clarify this issue.Comment: 4 pages with 2 ps figures. Minors changes are made in the text with updated references. Revised version to appear in Phys. Rev. Letter

    Jet Quenching in the Opposite Direction of a Tagged Photon in High-Energy Heavy-Ion Collisions

    Get PDF
    We point out that events associated with large ETE_T direct photons in high-energy heavy-ion collisions can be used to study jet energy loss in dense matter. In such events, the pTp_T spectrum of charged hadrons from jet fragmentation in the opposite direction of the tagged photon is estimated to be well above the background which can be reliably subtracted at moderately large pTp_T. We demonstrate that comparison between the extracted fragmentation function in AAAA and pppp collisions can be used to determine the jet energy loss and the interaction mean-free-path in the dense matter produced in high-energy heavy-ion collisions.Comment: 4 pages in RevTex twocolumn with embedded psfigure

    Temperature-dependent proximity magnetism in Pt

    Full text link
    We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore, it cannot be explained by the established mechanisms of magnetic coupling across nonmagnetic spacers. We show that the experimental results are consistent with the presence of magnetism induced in Pt in proximity to ferromagnets, in direct analogy to the well-known proximity effects in superconductivity.Comment: 4 pages, 3 figure

    Diphoton Production at Hadron Colliders and New Contact Interactions

    Full text link
    We explore the capability of the Tevatron and LHC to place limits on the possible existence of flavor-independent qqˉγγq \bar q \gamma\gamma contact interactions which can lead to an excess of diphoton events with large invariant masses. Assuming no departure from the Standard Model is observed, we show that the Tevatron will eventually be able to place a lower bound of 0.5-0.6 TeV on the scale associated with this new contact interaction. At the LHC, scales as large as 3-6 TeV may be probed with suitable detector cuts and an integrated luminosity of 100fb1100 fb^{-1}.Comment: LaTex, 12pages plus 5 figures(available on request), SLAC-PUB-657

    Systematic Study of High p_T Hadron Spectra in pp, pA and AA Collisions from SPS to RHIC Energies

    Get PDF
    High-pTp_T particle spectra in p+pp+p (pˉ+p\bar p + p), p+Ap+A and A+BA+B collisions are calculated within a QCD parton model in which intrinsic transverse momentum, its broadening due to initial multiple parton scattering, and jet quenching due to parton energy loss inside a dense medium are included phenomenologically. The intrinsic kTk_T and its broadening in p+Ap+A and A+BA+B collisions due to initial multiple parton scattering are found to be very important at low energies (s<50\sqrt{s}<50 GeV). Comparisons with S+SS+S, S+AuS+Au and Pb+PbPb+Pb data with different centrality cuts show that the differential cross sections of large transverse momentum pion production (pT>1p_T>1 GeV/cc) in A+BA+B collisions scale very well with the number of binary nucleon-nucleon collisions (modulo effects of multiple initial scattering). This indicates that semi-hard parton scattering is the dominant particle production mechanism underlying the hadron spectra at moderate pT>1p_T \stackrel{>}{\sim} 1 GeV/cc. However, there is no evidence of jet quenching or parton energy loss. Within the parton model, one can exclude an effective parton energy loss dEq/dx>0.01dE_q/dx>0.01 GeV/fm and a mean free path λq<7\lambda_q< 7 fm from the experimental data of A+BA+B collisions at the SPS energies. Predictions for high pTp_T particle spectra in p+Ap+A and A+AA+A collisions with and without jet quenching at the RHIC energy are also given. Uncertainties due to initial multiple scattering and nuclear shadowing of parton distributions are also discussed.Comment: 13 pages in RevTex with 14 figures, the final published version (with some typos corrected

    kt Effects in Direct-Photon Production

    Full text link
    We discuss the phenomenology of initial-state parton-kt broadening in direct-photon production and related processes in hadron collisions. After a brief summary of the theoretical basis for a Gaussian-smearing approach, we present a systematic study of recent results on fixed-target and collider direct-photon production, using complementary data on diphoton and pion production to provide empirical guidance on the required amount of kt broadening. This approach provides a consistent description of the observed pattern of deviation of next-to-leading order QCD calculations relative to the direct-photon data, and accounts for the shape and normalization difference between fixed-order perturbative calculations and the data. We also discuss the uncertainties in this phenomenological approach, the implications of these results on the extraction of the gluon distribution of the nucleon, and the comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure
    corecore