8,491 research outputs found

    Essential self-adjointness in one-loop quantum cosmology

    Full text link
    The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which corrects section

    Flavour-conserving oscillations of Dirac-Majorana neutrinos

    Get PDF
    We analyze both chirality-changing and chirality-preserving transitions of Dirac-Majorana neutrinos. In vacuum, the first ones are suppressed with respect to the others due to helicity conservation and the interactions with a (``normal'') medium practically does not affect the expressions of the probabilities for these transitions, even if the amplitudes of oscillations slightly change. For usual situations involving relativistic neutrinos we find no resonant enhancement for all flavour-conserving transitions. However, for very light neutrinos propagating in superdense media, the pattern of oscillations νLνLC\nu_L \to \nu^C_L is dramatically altered with respect to the vacuum case, the transition probability practically vanishing. An application of this result is envisaged.Comment: 14 pages, latex 2E, no figure

    A New Family of Gauges in Linearized General Relativity

    Get PDF
    For vacuum Maxwell theory in four dimensions, a supplementary condition exists (due to Eastwood and Singer) which is invariant under conformal rescalings of the metric, in agreement with the conformal symmetry of the Maxwell equations. Thus, starting from the de Donder gauge, which is not conformally invariant but is the gravitational counterpart of the Lorenz gauge, one can consider, led by formal analogy, a new family of gauges in general relativity, which involve fifth-order covariant derivatives of metric perturbations. The admissibility of such gauges in the classical theory is first proven in the cases of linearized theory about flat Euclidean space or flat Minkowski space-time. In the former, the general solution of the equation for the fulfillment of the gauge condition after infinitesimal diffeomorphisms involves a 3-harmonic 1-form and an inverse Fourier transform. In the latter, one needs instead the kernel of powers of the wave operator, and a contour integral. The analysis is also used to put restrictions on the dimensionless parameter occurring in the DeWitt supermetric, while the proof of admissibility is generalized to a suitable class of curved Riemannian backgrounds. Eventually, a non-local construction is obtained of the tensor field which makes it possible to achieve conformal invariance of the above gauges.Comment: 28 pages, plain Tex. In the revised version, sections 4 and 5 are completely ne

    Radiometric infrared focal plane array imaging system for thermographic applications

    Get PDF
    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background)

    The critical dimension for a 4th order problem with singular nonlinearity

    Full text link
    We study the regularity of the extremal solution of the semilinear biharmonic equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under Dirichlet boundary conditions u=νu=0u=\partial_\nu u=0 on B\partial B. We complete here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the identification of a "pull-in voltage" \la^*>0 such that a stable classical solution u_\la with 0 exists for \la\in (0,\la^*), while there is none of any kind when \la>\la^*. Our main result asserts that the extremal solution uλu_{\lambda^*} is regular (supBuλ<1)(\sup_B u_{\lambda^*} <1) provided N8 N \le 8 while uλu_{\lambda^*} is singular (supBuλ=1\sup_B u_{\lambda^*} =1) for N9N \ge 9, in which case 1C0x4/3uλ(x)1x4/31-C_0|x|^{4/3}\leq u_{\lambda^*} (x) \leq 1-|x|^{4/3} on the unit ball, where C0:=(λλ)1/3 C_0:= (\frac{\lambda^*}{\overline{\lambda}})^{1/3} and λˉ:=8/9(N2/3)(N8/3) \bar{\lambda}:= {8/9} (N-{2/3}) (N- {8/3}).Comment: 19 pages. This paper completes and replaces a paper (with a similar title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this author's papers can be downloaded at this http://www.birs.ca/~nassif

    One-Loop Effective Action for Euclidean Maxwell Theory on Manifolds with Boundary

    Get PDF
    This paper studies the one-loop effective action for Euclidean Maxwell theory about flat four-space bounded by one three-sphere, or two concentric three-spheres. The analysis relies on Faddeev-Popov formalism and ζ\zeta-function regularization, and the Lorentz gauge-averaging term is used with magnetic boundary conditions. The contributions of transverse, longitudinal and normal modes of the electromagnetic potential, jointly with ghost modes, are derived in detail. The most difficult part of the analysis consists in the eigenvalue condition given by the determinant of a 2×22 \times 2 or 4×44 \times 4 matrix for longitudinal and normal modes. It is shown that the former splits into a sum of Dirichlet and Robin contributions, plus a simpler term. This is the quantum cosmological case. In the latter case, however, when magnetic boundary conditions are imposed on two bounding three-spheres, the determinant is more involved. Nevertheless, it is evaluated explicitly as well. The whole analysis provides the building block for studying the one-loop effective action in covariant gauges, on manifolds with boundary. The final result differs from the value obtained when only transverse modes are quantized, or when noncovariant gauges are used.Comment: 25 pages, Revte

    Spectral asymptotics of Euclidean quantum gravity with diff-invariant boundary conditions

    Full text link
    A general method is known to exist for studying Abelian and non-Abelian gauge theories, as well as Euclidean quantum gravity, at one-loop level on manifolds with boundary. In the latter case, boundary conditions on metric perturbations h can be chosen to be completely invariant under infinitesimal diffeomorphisms, to preserve the invariance group of the theory and BRST symmetry. In the de Donder gauge, however, the resulting boundary-value problem for the Laplace type operator acting on h is known to be self-adjoint but not strongly elliptic. The latter is a technical condition ensuring that a unique smooth solution of the boundary-value problem exists, which implies, in turn, that the global heat-kernel asymptotics yielding one-loop divergences and one-loop effective action actually exists. The present paper shows that, on the Euclidean four-ball, only the scalar part of perturbative modes for quantum gravity are affected by the lack of strong ellipticity. Further evidence for lack of strong ellipticity, from an analytic point of view, is therefore obtained. Interestingly, three sectors of the scalar-perturbation problem remain elliptic, while lack of strong ellipticity is confined to the remaining fourth sector. The integral representation of the resulting zeta-function asymptotics is also obtained; this remains regular at the origin by virtue of a spectral identity here obtained for the first time.Comment: 25 pages, Revtex-4. Misprints in Eqs. (5.11), (5.14), (5.16) have been correcte

    One-Loop Divergences in Simple Supergravity: Boundary Effects

    Get PDF
    This paper studies the semiclassical approximation of simple supergravity in Riemannian four-manifolds with boundary, within the framework of ζ\zeta-function regularization. The massless nature of gravitinos, jointly with the presence of a boundary and a local description in terms of potentials for spin 32{3\over 2}, force the background to be totally flat. First, nonlocal boundary conditions of the spectral type are imposed on spin-32{3\over 2} potentials, jointly with boundary conditions on metric perturbations which are completely invariant under infinitesimal diffeomorphisms. The axial gauge-averaging functional is used, which is then sufficient to ensure self-adjointness. One thus finds that the contributions of ghost and gauge modes vanish separately. Hence the contributions to the one-loop wave function of the universe reduce to those ζ(0)\zeta(0) values resulting from physical modes only. Another set of mixed boundary conditions, motivated instead by local supersymmetry and first proposed by Luckock, Moss and Poletti, is also analyzed. In this case the contributions of gauge and ghost modes do not cancel each other. Both sets of boundary conditions lead to a nonvanishing ζ(0)\zeta(0) value, and spectral boundary conditions are also studied when two concentric three-sphere boundaries occur. These results seem to point out that simple supergravity is not even one-loop finite in the presence of boundaries.Comment: 37 pages, Revtex. Equations (5.2), (5.3), (5.5), (5.7), (5.8) and (5.13) have been amended, jointly with a few misprint

    Lack of strong ellipticity in Euclidean quantum gravity

    Get PDF
    Recent work in Euclidean quantum gravity has studied boundary conditions which are completely invariant under infinitesimal diffeomorphisms on metric perturbations. On using the de Donder gauge-averaging functional, this scheme leads to both normal and tangential derivatives in the boundary conditions. In the present paper, it is proved that the corresponding boundary value problem fails to be strongly elliptic. The result raises deep interpretative issues for Euclidean quantum gravity on manifolds with boundary.Comment: 14 pages, Plain Tex, 33 KB, no figure
    corecore