2,402 research outputs found

    Bayesian analysis of interiors of HD 219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55 Cnc e, and HD 97658b using stellar abundance proxies

    Get PDF
    Using a generalized Bayesian inference method, we aim to explore the possible interior structures of six selected exoplanets for which planetary mass and radius measurements are available in addition to stellar host abundances: HD~219134b, Kepler-10b, Kepler-93b, CoRoT-7b, 55~Cnc~e, and HD~97658b. We aim to investigate the importance of stellar abundance proxies for the planetary bulk composition (namely Fe/Si and Mg/Si) on prediction of planetary interiors. We performed a full probabilistic Bayesian inference analysis to formally account for observational and model uncertainties while obtaining confidence regions of structural and compositional parameters of core, mantle, ice layer, ocean, and atmosphere. We determined how sensitive our parameter predictions depend on (1) different estimates of bulk abundance constraints and (2) different correlations of bulk abundances between planet and host star. [...] Although the possible ranges of interior structures are large, structural parameters and their correlations are constrained by the sparse data. The probability for the tested exoplanets to be Earth-like is generally very low. Furthermore, we conclude that different estimates of planet bulk abundance constraints mainly affect mantle composition and core size.Comment: Astronomy & Astrophysics, 597, A38 (15 pages, 9 figures

    Coordinate representation of particle dynamics in AdS and in generic static spacetimes

    Full text link
    We discuss the quantum dynamics of a particle in static curved spacetimes in a coordinate representation. The scheme is based on the analysis of the squared energy operator E^2, which is quadratic in momenta and contains a scalar curvature term. Our main emphasis is on AdS spaces, where this term is fixed by the isometry group. As a byproduct the isometry generators are constructed and the energy spectrum is reproduced. In the massless case the conformal symmetry is realized as well. We show the equivalence between this quantization and the covariant quantization, based on the Klein-Gordon type equation in AdS. We further demonstrate that the two quantization methods in an arbitrary (N+1)-dimensional static spacetime are equivalent to each other if the scalar curvature terms both in the operator E^2 and in the Klein-Gordon type equation have the same coefficient equal to (N-1)/(4N).Comment: 14 pages, no figures, typos correcte

    Irregular singularities in Liouville theory

    Get PDF
    Motivated by problems arising in the study of N=2 supersymmetric gauge theories we introduce and study irregular singularities in two-dimensional conformal field theory, here Liouville theory. Irregular singularities are associated to representations of the Virasoro algebra in which a subset of the annihilation part of the algebra act diagonally. In this paper we define natural bases for the space of conformal blocks in the presence of irregular singularities, describe how to calculate their series expansions, and how such conformal blocks can be constructed by some delicate limiting procedure from ordinary conformal blocks. This leads us to a proposal for the structure functions appearing in the decomposition of physical correlation functions with irregular singularities into conformal blocks. Taken together, we get a precise prediction for the partition functions of some Argyres-Douglas type theories on the four-sphere.Comment: 84 pages, 6 figure

    Comparative study of gp130 cytokine effects on corticotroph AtT-20 cells - Redundancy or specificity of neuroimmunoendocrine modulators?

    Get PDF
    Objective: This comparative in vitro study examined the effects of all known gp130 cytokines on murine corticotroph AtT-20 cell function. Methods: Cytokines were tested at equimolar concentrations from 0.078 to 10 nM. Tyrosine phosphorylation of the signal transducer and activator of transcription ( STAT) 3 and STAT1, the STAT-dependent suppressor of cytokine signaling (SOCS)-3 promoter activity, SOCS-3 gene expression, STAT-dependent POMC promoter activity and adrenocorticotropic hormone ( ACTH) secretion were determined. Results: Leukemia inhibitory factor (LIF), human oncostatin M (OSM) and cardiotrophin (CT)-1 (LIFR/gp130 ligands), as well as ciliary neurotrophic factor ( CNTF) and novel neurotrophin1/B-cell stimulating factor-3 (CNTFRalpha/LIFR/gp130 ligands) are potent stimuli of corticotroph cells in vitro. In comparison, interleukin (IL)-6 (IL-6R/gp130 ligand) and IL-11 (IL-11R/gp130 ligand) exhibited only modest direct effects on corticotrophs, while murine OSM (OSMR/gp130 ligand) showed no effect. Conclusion: (i) CNTFR complex ligands are potent stimuli of corticotroph function, comparable to LIFR complex ligands; (ii) IL-6 and IL-11 are relatively weak direct stimuli of corticotroph function; (iii) differential effects of human and murine OSM suggest that LIFR/gp130 (OSMR type I) but not OSMR/gp130 (OSMR type II) are involved in corticotroph signaling. (iv) CT-1 has the hitherto unknown ability to stimulate corticotroph function, and (v) despite redundant immuno-neuroendocrine effects of different gp130 cytokines, corticotroph cells are preferably activated through the LIFR and CNTFR complexes. Copyright (C) 2004 S. Karger AG, Basel

    M Theory from World-Sheet Defects in Liouville String

    Get PDF
    We have argued previously that black holes may be represented in a D-brane approach by monopole and vortex defects in a sine-Gordon field theory model of Liouville dynamics on the world sheet. Supersymmetrizing this sine-Gordon system, we find critical behaviour in 11 dimensions, due to defect condensation that is the world-sheet analogue of D-brane condensation around an extra space-time dimension in M theory. This supersymmetric description of Liouville dynamics has a natural embedding within a 12-dimensional framework suggestive of F theory.Comment: 17 pages LATEX, 1 epsf figure include

    Singular Liouville fields and spiky strings in \rr^{1,2} and SL(2,\rr)

    Full text link
    The closed string dynamics in \rr^{1,2} and SL(2,\rr) is studied within the scheme of Pohlmeyer reduction. In both spaces two different classes of string surfaces are specified by the structure of the fundamental quadratic forms. The first class in \rr^{1,2} is associated with the standard lightcone gauge strings and the second class describes spiky strings and their conformal deformations on the Virasoro coadjoint orbits. These orbits correspond to singular Liouville fields with the monodromy matrixes ±I\pm I. The first class in SL(2,\rr) is parameterized by the Liouville fields with vanishing chiral energy functional. Similarly to \rr^{1,2}, the second class in SL(2,\rr) describes spiky strings, related to the vacuum configurations of the SL(2,\rr)/U(1) coset model.Comment: 37 p. 6 fi

    Quantum-Gravitational Diffusion and Stochastic Fluctuations in the Velocity of Light

    Get PDF
    We argue that quantum-gravitational fluctuations in the space-time background give the vacuum non-trivial optical properties that include diffusion and consequent uncertainties in the arrival times of photons, causing stochastic fluctuations in the velocity of light ``in vacuo''. Our proposal is motivated within a Liouville string formulation of quantum gravity that also suggests a frequency-dependent refractive index of the particle vacuum. We construct an explicit realization by treating photon propagation through quantum excitations of DD-brane fluctuations in the space-time foam. These are described by higher-genus string effects, that lead to stochastic fluctuations in couplings, and hence in the velocity of light. We discuss the possibilities of constraining or measuring photon diffusion ``in vacuo'' via Îł\gamma-ray observations of distant astrophysical sources.Comment: 17 pages LATEX, uses axodraw style fil

    Constraining planet structure and composition from stellar chemistry: trends in different stellar populations

    Get PDF
    The chemical composition of stars that have orbiting planets provides important clues about the frequency, architecture, and composition of exoplanet systems. We explore the possibility that stars from different galactic populations that have different intrinsic abundance ratios may produce planets with a different overall composition. We compiled abundances for Fe, O, C, Mg, and Si in a large sample of solar neighbourhood stars that belong to different galactic populations. We then used a simple stoichiometric model to predict the expected iron-to-silicate mass fraction and water mass fraction of the planet building blocks, as well as the summed mass percentage of all heavy elements in the disc. Assuming that overall the chemical composition of the planet building blocks will be reflected in the composition of the formed planets, we show that according to our model, discs around stars from different galactic populations, as well as around stars from different regions in the Galaxy, are expected to form rocky planets with significantly different iron-to-silicate mass fractions. The available water mass fraction also changes significantly from one galactic population to another. The results may be used to set constraints for models of planet formation and chemical composition. Furthermore, the results may have impact on our understanding of the frequency of planets in the Galaxy, as well as on the existence of conditions for habitability.Comment: Accepted for publication in Astronomy & Astrophysic
    • …
    corecore