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1 Introduction

In this paper we propose a precise answer to a natural question which arises in the study

of four-dimensional N = 2 gauge theories: How can we define and compute the partition

function of an Argyres-Douglas theory [2, 3] on S4? The answer to this question is suggested

by the recent observation [1] that the S4 partition function [26] of a certain class of SU(2)

gauge theories coincides with Liouville theory correlation functions. The Argyres-Douglas

theory studied in this paper can be defined by a limiting procedure from the so-called

Nf = 4 theory, which is one of the examples studied in [1]. The partition function of the

Argyres-Douglas theory should therefore be found by taking a suitable limit of the partition

function of the Nf = 4 theory, which is related to a four-point function in Liouville theory

according to [1]. We are going to give evidence for the existence of such a limit, and

describe the result precisely. The answer is given in section 6.2 below.

In this paper we are going to exploit the observation that the limiting procedure which

defines Argyres-Douglas theories from SU(2) gauge theories [16] has a simple interpretation

as a collision limit in Liouville theory. We are going to show that such a limit produces

irregular vertex operators from the collision of several standard vertex operators. The

existence of a well-defined collision limit for Liouville theory correlation functions is far from

obvious from a two-dimensional perspective. The connection to gauge theory is a crucial

source of inspiration in defining the notion of irregular vertex operator in Liouville theory.

Once we have a solid two-dimensional definition of our objective, the 2d CFT perspective is

best suited for the actual calculation of the answer. The calculation proceeds in two stages.

First, we define and compute a basis of conformal blocks with irregular singularities which

has properties analogous to the standard BPZ conformal blocks [8]. Then we identify a

measure which combines holomorphic and anti-holomorphic conformal blocks into a well-

defined Liouville theory correlation function. A posteriori, the various stages of the 2d

CFT calculation can then be given an intuitive gauge-theory interpretation.

– 1 –
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The relations between N=2 supersymmetric gauge theories and Liouville theory re-

ferred to above appear to be part of a larger story that has started unfolding, relating

supersymmetric gauge theories, conformal field theories, (quantized) moduli spaces of flat

connections, various integrable models and the geometric Langlands program, see [5, 16,

18, 23, 24, 30] for an incomplete list of relevant references. A common theme in these de-

velopments are relations with the Hitchin integrable system and with moduli spaces of flat

connections on Riemann surfaces. The consideration of irregular singularities appears to

be a very natural generalization in this context. From this point of view it seemed overdue

from this point of view to have a Liouville theory with irregular singularities.

This paper is meant to be the first of a series of papers on this subject. While we

here focus on more algebraic aspects like the construction of the conformal blocks, subse-

quent publications will in particular discuss analogs of the modular transformations relating

different bases for spaces of conformal blocks, and relations with a generalization of the

quantum Teichmüller theory to cases with irregular singularities.

The structure of the paper mirrors this logical structure. In section 2 we define the

notion of an irregular conformal block. In sections 3 and 5 we describe two different,

natural ways to define the same BPZ-like basis of irregular conformal blocks and clarify

the nature of collision limits. In section 6 we use the collision limit to derive the correct

integration measure for a Liouville correlation function. Finally, in section 7 we provide

the gauge theory interpretation of the various ingredients of the 2d CFT answer. We refer

the reader to the introductory part of each section for further details.

While this paper was being written, reference [7] appeared which has partial overlap

with the discussion in sections 2 and 7.
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2 Irregular singularities in conformal field theory

2.1 Irregular vectors

A primary field Ψ∆(z) in conformal field theory is defined by the operator product expan-

sion

T (y)Ψ∆(z) ∼ ∆

(y − z)2
+

1

y − z

∂

∂z
Ψ∆(z) , (2.1)

which is closely related to the statement the the state |∆〉 created as

|∆〉 := lim
z→0

Ψ∆(z)|0〉 (2.2)

– 2 –
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satisfies the highest weight property

Ln|∆〉 = 0 , n > 0 , L0|∆〉 = ∆ |∆〉 . (2.3)

Interpreting the Virasoro generators Ln with n > 0 as generalizations of “annihilation”

operators may lead one to consider analogs of the coherent states where some subset of the

generators Ln with n > 0 acts diagonally as

Lk| I 〉 = Λk| I 〉 . (2.4)

From a mathematical perspective one may regard such vectors as analogs of the so-called

Whittaker vectors in the representation theory of real reductive groups.

The Virasoro algebra, in particular the relations [Lk, Lk′ ] = (k−k′)Lk+k′ for k, k
′ ≥ 0,

imply that Λk+k′ = 0 if both Lk and Lk′ are contained in the set of generators which act

diagonally as in (2.4). Based on this observation it is easy to see that the values of the

indices k for which the eigenvector property (2.4) can hold with Λk 6= 0 must be taken

from one of the sets {n, n+ 1, . . . , 2n}, where n is a positive integer. We will say that |In〉
is an irregular vectors of order n if it satisfies

Lk| I 〉 = Λk| I 〉 , k = n, . . . , 2n , (2.5a)

Lk| I 〉 = 0 , k > 2n . (2.5b)

The collection Λ = {Λn, . . . ,Λ2n} of eigenvalues parameterizes the irregular vectors of order

n, which may be expressed by using the notation |In,Λ〉.
The representation of the generators Lk, k = 0, . . . , n− 1, is severely restricted by the

relations [Lk, Lk′ ] = (k− k′)Lk+k′ for k, k
′ ≥ 0. A convenient way to satisfy these relations

can be introduced by using the parameterization

Λk = ((k + 1)Q− 2α)ck −
k−1
∑

l=1

clck−l , k = n, . . . , 2n . (2.6)

This expresses the n+1 parameters Λ = {Λn, . . . ,Λ2n} in terms of the parameter α and the

collection of parameters c = (c1, . . . , cn). It is then elementary to check that the definitions

Lk| In 〉 := Lk| In 〉 ,
Lk ≡ Lk(c, α) := Λk +

n−1
∑

l=k+1

(l − k)cl
∂

∂cl−k
,

L0 ≡ L0(c, α) := α(Q− α) +
n
∑

k=1

k ck
∂

∂ck
,

(2.7)

are compatible with the algebraic relations [Lk, Lk′ ] = (k − k′)Lk+k′ , where k, k′ ≥ 0.

It will often be convenient to summarize the conditions (2.5) and (2.7) in the form

T>(y)| In 〉 =

[

2n
∑

k=n

Λk

yk+2
+

n−1
∑

k=0

Lk

yk+2
+

1

y
L−1

]

| In 〉 , (2.8)

– 3 –
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where T>(y) :=
∑

k≥−1 y
−n−2Ln. The formula (2.8) encodes the singular behavior of the

energy-momentum tensor T (y) in the vicinity of an irregular singularity at y = 0.

A more invariant point of view is to regard the conditions (2.5b) as natural gen-

eralization of the highest weight conditions (2.3). The highest weigth condition (2.3)

says that |∆〉 is fixed by the algebra of holomorphic vector fields VectD on the unit disc

D = {z ∈ C; |z| < 1} with generators Lk ≃ zk(z∂z + ∆(k + 1)), k ≥ 0. The space of all

vectors which satisfy (2.5b) must then be a representation of the truncated algebra Vect
(n)
D

of holomorphic vector fields on a disc which has generators lk, k = 0, . . . , 2n and relations

[ lk , lk′ ] = (k − k′)lk+k′ , if k + k′ ≤ 2n ,

[ lk , lk′ ] = 0 , if k + k′ > 2n ,
0 ≤ k, k′ ≤ 2n .

The equations (2.5a), (2.6) and (2.7) define representations of Vect
(n)
D

on spaces of functions

of the n+ 1 variables α and c = (c1, . . . , cn).

2.1.1 Comparison to free-field representation

Let us introduce the (left-moving) chiral free field ϕ(z), with mode-expansion given by

φ(z) = q − αp log z +
∑

k 6=0

i

n
anz

−n , αp := ip+
Q

2
. (2.9)

The modes are postulated to have the following commutation and hermiticity relations

[q, p] =
i

2
,

q† =q,

p† =p,
[an, am] =

n

2
δn+m, a†n = a−n, (2.10)

which are realized in the Hilbert-space

HF
L ≡ L2(R)⊗F , (2.11)

where F is the Fock-space generated by acting with the modes an, n < 0 on the Fock-

vacuum Ω that satisfies anΩ = 0, n > 0. We will mainly work in a representation where p

is diagonal.

The action of the Virasoro algebra on HF
L can be defined in terms of the generators

Ln ≡ Ln(p), where

Ln(p) = (2p+ inQ)an +
∑

k 6=0,n

akan−k, n 6= 0,

L0(p) = p2 +
Q2

4
+ 2

∑

k>0

a−kak.

(2.12)

Equations (2.12) yield a representation of the Virasoro algebra with central charge

c = 1 + 6Q2. (2.13)

Let us consider coherent states |c;α〉(n) that satisfy

ak |c;α〉(n) = −ick |c;α〉(n) ,
ak |c;α〉(n) = 0 ,

for 0 < k ≤ n ,

for k > n .
(2.14)

– 4 –
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It follows directly (2.14) that the coherent states |c;α〉(n) represent a very special example

of irregular vector of degree n within the Fock space representation (2.12) of the Virasoro

algebra. In a sense, the Ward identities for general irregular vectors are modeled on this

specific example.

We will discuss in a later section 4 how to give a free-field description of more general

irregular vectors by dressing such bare coherent state with screening charges.

2.1.2 Irregular modules

From a given irregular vector we may generate infinitely many other vectors by acting with

the Virasoro generators. It will be useful for us to formalize the point of view that this

leads to the definition of new types of Virasoro modules.

To this aim, let us first note that the space DO(n) of algebraic differential operators

in n variables c = (c1, . . . , cn) is naturally a module for the subalgebra Vir+ isomorphic

to VectD generated by Lk, k ≥ 0. Identifying the trivial differential operator 1 with the

irregular vector I
(n)
c;α corresponds to defining the action of Vir+ on DO(n) via

Lk · D = DLk(c;α) , ∀ D ∈ DO(n) . (2.15)

From this representation of Vir+ one may then naturally induce a representation V(n)
c;α of

the full Virasoro algebra. As a vector space V(n)
c;α is spanned by expressions of the form

L−I D := Llk
−k L

lk−1

−(k−1) · · · L
l1
−1D , (2.16)

where D is any element of a basis for DO(n). The action of the Virasoro algebra is defined

in the usual way: Writing

Lk L−I =
k
∑

k′=0

∑

I′

RII′

kk L−I′ Lk′ , (2.17)

with the help of the Virasoro algebra, we may apply (2.15) with k replaced by k′ to define

the action of Lk on any basis element of the form L−I D.

Irregular vectors and the associated modules were recently discussed from a similar

point of view in [13].

2.2 Irregular singularities from collision of primary fields

Further motivation for the definitions above can be obtained from the consideration of

certain collision limits of usual primary fields. Let us consider vectors

|Rn(z) 〉 ≡ |Rn(z1, . . . , zn)〉 :=
n+1
∏

r=1

Ψ∆r(zr)| 0 〉 ,

that are created by acting with a product of primary fields Ψ∆r(zr) on the vacuum |0〉.
The vectors |Rn(z) 〉 satisfy the conditions

Lk|Rn(z) 〉 =
n+1
∑

r=1

zkr

(

zr
∂

∂zr
+∆r(k + 1)

)

|Rn(z) 〉 , k ≥ −1 , (2.18)

– 5 –
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which are summarized in

T>(y)|Rn(z) 〉 =
n+1
∑

r=1

(

∆αr

(y − zr)2
+

1

y − zr

∂

∂zr

)

|Rn(z)〉 . (2.19)

We are going to argue that the constraints (2.8) characteristic for irregular vectors follow

from (2.19) in a suitable limit which is defined by sending zr → 0 and ∆r → ∞ in a

correlated way.

2.2.1 Irregular puncture of degree n = 1

Let us now consider a limit which creates an irregular puncture of degree n = 1 in the

collision of two regular punctures. Let us study the behavior of T (y)|R1 〉

|R1 〉 := Ψ∆z(z) |∆i 〉 (2.20)

in a suitable limit where ∆z,∆i → ∞, z → 0, to be defined more precisely in the following.

We have

T>(y) |R1 〉 =

(

∆z

(y − z)2
+

∆i

y2
+

1

y − z

z

y

∂

∂z1
+

1

y
L−1

)

|R1 〉

It will be useful to rewrite this using ∆r = αr(Q− αr) as

T>(y) |R1 〉 =
[

Tsing(y) +
2αzαi

y(y − z)
+

1

y(y − z)
z
∂

∂z
+

L−1

y

)]

|R1 〉 , (2.21)

where we introduced Tsing(y) := −(∂yφsing(y))
2 +Q∂2

yφsing(y) with

∂yφsing(y) = − αz

y − z
− αi

y
. (2.22)

In order to simplify the following discussions let us consider the vector |R′
1 〉 defined by

|R1 〉 = z−2αzαi |R′
1 〉 . (2.23)

In terms of |R′
1 〉 the equations (2.21) simplify to

T (y) |R′
1 〉 =

[

Tsing(y) +
1

y(y − z)
z
∂

∂z
+

1

y
L−1

]

|R′
1 〉 (2.24)

Note that ∂yφsing(y) may be rewritten as

∂yφsing(y) = − c1 + yα′

y(y − z1)
, (2.25)

where

c1 := −zαi , α′ := αz + αi .

In the limit to be taken, we will send αz, αi → ∞, z → 0 keeping c1 and α′ finite. This

implies that φsing(y) and Tsing(y) have a finite limit.

In the limit of interest we reproduce the operator appearing on the right hand side of

T>(y) | I1(c1) 〉 =

[

Λ2

y4
+

Λ1

y3
+

1

y2

(

c1
∂

∂c1
+∆α′

)

+
1

y
L−1

]

| I1(c1) 〉

which are the constraints characterizing an irregular vector of order 1.

– 6 –
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2.2.2 Irregular puncture of degree n = 2

Let us now consider a limit which creates an irregular puncture of degree n = 2 in the

collision of three regular punctures. Let us study the behavior of T (y)|R2 〉

|R2 〉 := Ψ∆1(z1)Ψ∆2(z2) |∆3 〉 (2.26)

in a suitable limit where ∆i → ∞, i = 1, 2, 3, zj → 0, j = 1, 2 to be defined more precisely

in the following. We have

T>(y) |R2 〉 =

(

∆1

(y − z1)2
+

∆2

(y − z2)2
+

∆3

y2
+

1

y − z1

z1
y

∂

∂z1
+

1

y − z2

z2
y

∂

∂z2
+

1

y
L−1

)

|R2 〉

It will be useful to rewrite this using ∆r = αr(Q− αr) as

T>(y) |R2 〉 =
[

Tsing(y) +
2α1α2

(y − z1)(y − z2)
+

2α1α3

y(y − z1)
+

2α2α3

y(y − z2)

+
1

y(y − z1)
z1

∂

∂z1
+

1

y(y − z2)
z2

∂

∂z2
+

L−1

y

)]

|R2 〉 , (2.27)

where we introduced Tsing(y) := −(∂yφsing(y))
2 +Q∂2

yφsing(y) with

∂yφsing(y) = − α1

y − z1
− α2

y − z2
− α3

y
. (2.28)

In order to simplify the following discussions let us consider the vector |R′
2 〉 defined by

|R2 〉 = z−2α1α3
1 z−2α2α3

2 (z1 − z2)
−2α2α1 |R′

2 〉 . (2.29)

In terms of |R′
2 〉 the equations (2.27) simplify to

T (y) |R′
2 〉 =

[

Tsing(y) +
1

y(y − z1)
z1

∂

∂z1
+

1

y(y − z2)
z2

∂

∂z2
+

1

y
L−1

]

|R′
2 〉 (2.30)

Note that ∂yφsing(y) may be rewritten as

∂yφsing(y) = − c2 + yc1 + y2α

y(y − z1)(y − z2)
, (2.31)

where

c2 := z1z2α3 , c1 := −z1(α2 + α3)− z2(α1 + α3) , α := α1 + α2 + α3 .

In the limit to be taken, we will send αi → ∞ for i = 1, 2, 3, zj → 0 for j = 1, 2 keeping

c2, c1 and α finite. This implies that φsing(y)and Tsing(y) have a finite limit.

The derivative terms in (2.30) may be rewritten using

zi
∂

∂zi
= zi

(

∂c1
∂zi

∂

∂c1
+

∂c2
∂zi

∂

∂c2

)

= zi(αi − α)
∂

∂c1
+ c2

∂

∂c2
, (2.32)
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as

1

y(y − z1)
z1

∂

∂z1
+

1

y(y − z2)
z2

∂

∂z2
= (2.33)

=
2y − z1 − z2

y(y − z1)(y − z2)
c2

∂

∂c2
+

c2 + αz1z2 + yc1
y(y − z1)(y − z2)

∂

∂c1
.

In the limit of interest we reproduce the operator appearing on the right hand side of

T>(y) | I2(c1, c2) 〉 =

[

Λ4

y6
+

Λ3

y5
+

Λ2

y4
+

1

y3

(

Λ1 + c2
∂

∂c1

)

+
1

y2

(

2c2
∂

∂c1
+ c1

∂

∂c1
+∆α

)

+
1

y
L−1

]

| I2(c1, c2) 〉

which are the constraints characterizing an irregular vector of order 2.

2.2.3 Colliding one after the other

It will sometimes be useful to decompose the limit above into two steps: We may, for

example, first send z1 → 0 and α1 → ∞, α3 → ∞ such that α′ := α1+α3 and c′1 := −z1α3

are kept fixed. The constraints reduce to

T (y) | I1(c′1, z2) 〉 =

[

Λ′
2

y4
+

Λ′
1

y3
+

1

y2

(

c′1
∂

∂c′1
+∆α′

)

(2.34)

+
∆α2

(y − z2)2
+

1

y(y − z2)
z2

∂

∂z2
+

1

y
L−1

]

| I1(c′1, z2) 〉

As before we may write

T (y) | I1(c′1, z2) 〉 =

[

Tsing(y) +
2α2c

′
1

y2(y − z2)
+

2α′α2

y(y − z2)
(2.35)

+
1

y2
d1

∂

∂d1
+

1

y(y − z2)
z2

∂

∂z2
+

1

y
L−1

]

| I1(c′1, z2) 〉

using Tsing(y) := −(∂zφsing(y))
2 +Q∂2

zφsing(y) with

∂zφsing(y) = − c′1
y2

− α′

y
− α2

y − z2
. (2.36)

The part proportional to 2α2(c
′
1+yα′) in (2.35) disappears in the constraints characterizing

| I1(c′1, z2) 〉 := z−2α2α′

2 e
2
α2c

′

1
z2 | I ′1(c′1, z2) 〉 . (2.37)

The limit z2 → 0 is performed next. φsing(y) has a finite limit if we send z2 → 0,

c′1 → ∞ and α′ → ∞ such that

α := α′ + α2 , c1 := c′1 − z2α
′ , c2 := −c′1z2 . (2.38)

are kept finite. We reproduce the constraints characterizing | I2(c1, c2) 〉.
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2.3 Geometric interpretation

In order to prepare for the more geometric interpretation of the irregular vectors let us

first revisit basic elements of the story in the regular case from a convenient point of view.

2.3.1 Conformal blocks

Conformal blocks are the holomorphic building blocks for the correlation functions in a

conformal field theory. The correlation functions of a conformal field theory can be defined

as vacuum expectation values
〈

0|∏n
r=1Ψ∆r(zr)|0

〉

of a product of vertex operators. They

can be expanded as a sum of products of holomorphic and anti-holomorphic building blocks

called conformal blocks as
〈

0
∣

∣

∣

n
∏

r=1

Ψ∆r(zr)
∣

∣

∣
0

〉

=

∫

P
dα(p) |Fp(z1, . . . , zn)|2. (2.39)

The integration is extended over tuples p = (p1, . . . , pn−3) ∈ P := R
n−3
+ . More generally

one may consider correlation function and conformal blocks associated to Riemann surfaces

CP1,...,Pn with n punctures,

〈 n
∏

r=1

Ψ∆r(Pr)

〉

C

=

∫

P
dα(p) |Fp(CP1,...,Pn

)|2. (2.40)

It is sometimes useful to fix a reference point P0 on C, and regard the conformal block as

an overlap

〈VC |Rn 〉 (2.41)

between a vector 〈VC | characteristic for the Riemann surface C \P0 with marked point P0

and the vector

|Rn(z)〉 ≡ |Rn(z1, . . . , zn)〉 :=
n+1
∏

r=1

Ψ∆r(zr)| 0 〉 ∈ V∆ , (2.42)

created by acting with n + 1 chiral vertex operators on the vacuum vector |0〉. We will

assume that the resulting vector is an element of a Verma module V∆ of the Virasoro

algebra. In the case 〈VC | = 〈0| we must assume ∆ = 0, so that V∆ is the representation

generated from the vacuum vector |0〉.

2.3.2 Conformal Ward identities

Let us briefly reformulate how conformal blocks are constrained by the conformal Ward

identities in a language that will be convenient for us. Representing the conformal blocks

as an overlap (2.41) one may encode the conformal Ward identites for Riemann surfaces

of genus 0 in the statement that the vectors |Rn(z) 〉 satisfy the equations (2.19). The

equations (2.19) are equivalent to the conditions (2.18) together with L−1|0〉 = 0. For

genus zero one immediately gets the familiar formula

〈

T (y)Ψn(zn) . . .Ψ1(z1)
〉

=
n+1
∑

i=1

(

∆αi

(y − zi)2
+

1

y − zi

∂

∂zi

)

〈

Ψn(zn) . . .Ψ1(z1)
〉

(2.43)
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from (2.19) if one bears in mind that T (y) :=
∑

k∈Z y
−n−2Ln and

〈0|Lk = 0 , for k ≤ 1. (2.44)

Equations (2.19) can be read as an infinite set of linear equations for the vectors |Rn(z)〉.
As will be discussed in more detail below, one finds an infinite-dimensional set of solu-

tions in general. Let us assume that we have found a complete1 set of solutions Bn :=

{|Rn,p(z)〉; p ∈ Pn}. Each solution defines a conformal block via

Fp(z) := 〈 0 |Rn,p(z) 〉 . (2.45)

For surfaces C of genus g ≥ 1 with marked point P0 one has to replace (2.44) by the

set of equations

〈VC |T [η] = 0 , T [η] :=

∫

γ0

dy η(y)T (y) , (2.46)

for any vector field η = η(y)∂y that extend holomorphically from a small circle γ0 sur-

rounding P0 to the rest2 of the the Riemann surface C. We may then consider

(i) a basis Bp
n := { |R p

n,p′′(z)〉 ; p′′ ∈ Pn } for the space of solutions to the equations (2.19)

within the same space V∆(p),

(ii) a basis B
p
C := { 〈V p

C,p′ | ; p′ ∈ PC } for the space of solutions to (2.46) within V†
∆(p),

(we are using the notation V†
∆(p) for the hermitian dual to the space V∆(p)),

and represent the conformal blocks as

FP (CP1...Pn+1) = 〈V p′′

C,p′ |R
p′′

n,p′′′ 〉 , P := (p′, p′′, p′′′) ∈ P ≡ PC × C× Pn . (2.47)

The set of equations (2.46) which characterize the vector 〈VC | is clearly dependent on

the complex struture of C \P0. We will next discuss how this dependence can be described

with the help of the Virasoro algebra.

2.3.3 Complex structure dependence

In order to see how the dependence on the complex structure of C is represented in this

formulation let us temporarily consider the case n = −1. We clearly have that

〈C |T [η] | 0 〉 = 0 , (2.48)

for all vector fields η that extend holomorphically from the curve γ0 to the rest of the

the Riemann surface C. This simply follows by deforming the contour of integration and

using the residue theorem. It is furthermore clear that (2.48) holds for all vector fields

η that extend holomorphically inside the disc D0 bounded by γ0. Such vector fields η =
∑

n ηny
n+1∂y have ηn = 0 for n < −1, so (2.48) follows from Ln|0〉 = 0, n ≥ −1. Of

1The precise meaning of “complete” is subtle in the case of infinite-dimensional vector spaces. It will be

clarified when it becomes relevant, which is not within this paper.
2The connected component which is separated from P0 by C0.
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particular interest are therefore the vector fields η for which the left hand side of (2.48) is

nonzero. The vector space of such vector fields may be represented as the double quotient

Vect(C\P0)
∖

C((y))∂y
/

Vect(D0) . It is a well-known mathematical result that this double

quotient is naturally isomorphic to the Teichmüller space T (C \P0) of deformations of

complex structures on the Riemann surface C \ P0,

T (C\P0) ≃ Vect(C\P0)
∖

C((y))∂y
/

Vect(D0) . (2.49)

Using the isomophism (2.49) one may associate to each vector field η an infinitesimal

variation ∂η of the complex structure on Cg,n. It is natural to require that

∂η〈VC | 0 〉 = 〈VC |T [η] | 0 〉 , ∀η . (2.50)

Turning to the case n ≥ 0 one may note that the vector |Rn(z)〉 is not annihilated by

T [η] for all η ∈ Vect(D0), but only by the subalgebra Vect(D0 \ {z1, . . . , zm} ) generated

by η = η(y)∂y which vanish at z1, . . . , zm. The vector fields η for which 〈VC |T [η] |Rn 〉 is
non-vanishing are naturally identified with the variations of complex structures of surfaces

Cg,n+1 obtained by gluing an n+1-punctured sphere P1 \ {z1, . . . , zn+1,∞} to C \P0, the

gluing being performed by identifying annular neighborhoods of P0 and ∞, respectively.

The variations of the positions z1, . . . , zn+1 become part of the Teichmüller variations of

Cg,n+1 in this way. Note in particular that the case n = 0 corresponds to the insertion of

a single vertex operator at P0 into C.

For our aims it is useful to observe that the additional deformations that Cg,n has

compared to C can be characterized more abstractly as corresponding to those vector

fields η ∈ Vect(D0) such that T [η]|Rn〉 6= 0. The action of these vector fields is represented

explicitly in terms of the derivatives ∂zr , r = 1, . . . , n+1 via (2.19). Note furthermore that

an overall translation of z1, . . . , zn by the same amount is equivalent to a variation of the

marked point P0 on C. We may therefore without loss of generality assume that zn+1 = 0.

The vector fields η(y)∂y that preserve this condition must vanish at y = 0. The set of

all such vector fields will be denoted as Vect(0)(D0). The remaining parameters z1, . . . , zn
can be considered as variables that represent explicitly the part of the complex structure

dependence of the conformal blocks coming from |Rn(z)〉. Variations of these parameters

correspond to vector fields η ∈ Vect(0)(D0) such that T [η] |Rn(z) 〉 6= 0.

2.3.4 Moduli of the irregular vectors

Let us finally return to the discussion of irregular vectors |In(c)〉. It is natural to interpret

〈VC | In(c) 〉 (2.51)

as a conformal block obtained by inserting into C a vertex operator which creates an

irregular singularity at position P0. We note that T [η] | In(c) 〉 are non-vanishing for η ∈
Vect(n)(D0). The action of T [η] on |In〉 is represented by differential operators with respect

to c1, . . . , cn. Having followed the discussion above it is clearly natural to regard the

parameters c1, . . . , cn as generalizations of the complex structure moduli associated to an

irregular singularity of order n at P0.
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It may also be helpful to compare conformal blocks with insertion of an irregular vector

to the conformal blocks constructed as

〈VC | I∞ 〉 , | I∞(χ) 〉 := eT [χ]|∆ 〉 , (2.52)

where T [χ] :=
∑

k∈Z χkLk. It is clear that

Lk | I∞(χ) 〉 = Dχ,k | I∞(χ) 〉 . (2.53)

where Dχ,k is a linear combination of derivatives ∂χk
for k > 0. The vector | I∞(χ) 〉 behaves

formally as an irregular vector of infinite order.

One may, on the other hand, regard eT [χ] as the operator which represents a re-

parametrization of the local coordinate around P0. Conformal blocks as 〈VC | I∞ 〉 therefore
represent functions on open subsets of an infinite dimensional generalization of the moduli

space T (C \P0) which parameterizes tuples (C,P0, y), where y denotes the choice of a local

coordinate around P0. The moduli space of all such tuples (C,P0, y) is closely related to

the moduli space of Riemann surfaces with a hole which has a parameterized boundary:

To given (C,P0, y) one may consider the surface C \ Dǫ, where Dǫ is a disc with radius

ǫ around P0, defined using the local coordinate y by the condition |y| < ǫ. Changes of

coordinate y induce reparameterizations of the boundary of C \ Dǫ.

As a finite, but arbitrarily large part of the reparameterizations of y acts nontrivially

on the irregular vectors, we may regard such vectors as an approximation to the insertion

of a hole with parameterized boundary. We will make this point of view more precise in

the second part of our paper. It will be shown that the irregular vectors can be used as a

useful regularization in the study of the infinite-dimensional moduli spaces associated to

surfaces with holes.

3 Algebraic construction of bases for spaces of irregular vectors

In order to construct physical correlation functions in a holomorphically factorized form

like (2.39) or (2.40) one first needs to find useful bases for the spaces of conformal blocks.

It is our next aim to define such bases in the case of conformal blocks constructed from

irregular vectors as in (2.51). This is equivalent to defining bases for the space of solution

to the Virasoro constraints summarized in (2.8).

3.1 The problem

It will again be useful to compare with the case of regular vectors |Rn(z)〉 defined in (2.42).

For this case it is well-known how to construct useful bases for the space of solutions to

the constraints characterizing the vectors |Rn(z)〉. One may, for example, introduce vertex

operators Ψα
αf ,αi

(z) that map from the Virasoro module Vαi
to Vαf

. Such vertex operators

are defined uniquely up to a constant by the intertwining property

Ln ·Ψα
αf ,αi

(z) = zn(z∂z + α(n+ 1))Ψα
αf ,αi

(z) + Ψα
αf ,αi

(z) · Ln . (3.1)
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Δ0

Δ1 Δ2 Δ3 Δ4

Δ5

δ1 δ2 δ3

Figure 1. The standard graphical representation of a conformal block. In the figure, ∆i denotes

∆αi
and δi denotes ∆βi

.

Out of these vertex operators one may then construct families of regular vectors defined

by expression such as

|R(n)(z, β) 〉 ≡ Ψα1
α0,β1

(z1)Ψ
α2
β1,β2

(z2) · · ·Ψαn

βn−1,αn+1
(zn) |αn+1 〉 . (3.2)

The elements of this family are labelled by the tuple β of intermediate dimensions,

β = (β1, . . . , βn−1). The same tuple may therefore be taken as label for a basis |R(n)(z, β) 〉
for the space of solutions to the constraints (2.19) inside the Verma module Vα0 . A dia-

grammatical representation for the conformal blocks 〈α0|R(n)(z, β)〉 is given in figure 1.

We have seen first evidence for the claim that irregular vectors can be constructed from

the collision of ordinary primary fields. This suggests that one may define bases for the

space of irregular vectors by taking a suitable limit of the family of vectors |R(n)(z, β) 〉.
This also suggests that the set of parameters labelling bases of irregular vectors is related

to the one appearing in the case of regular vectors: There will be n − 1 parameters β =

(β1, . . . , βn−1) labelling elements | I(n)(z, β) 〉 of a basis for the space of irregular vectors

of n-th order. Alternatively, one may look for more direct ways of defining such bases, for

example by generalizing the construction (3.2). We’ll propose ways to realize both options,

but it will turn out that none of them will be straightforward to realize.

One may begin looking for a generalization of the construction (3.2) by recalling that

this definition produces a representation of the regular vector |R(n)(z, β) 〉 as a power

series in z1, z2/z1, z3/z2, etc., with a leading powers (zk/zk−1)
∆βk−1

−∆βk
−∆αk controlled

by the intermediate conformal dimensions. This basis therefore has a simple behavior at

the boundary of the complex structure moduli space where the punctures are colliding in a

specific pattern, zn ≪ zn−1 ≪ · · · ≪ z2 ≪ z1. The role of the component of the boundary

of the complex structure moduli space considered above would in the case of irregular

vectors naturally be taken by regimes in which the parameters c = (c1, . . . cn) tend to zero

in a specific hierarchical order. This suggests that part of the characterization of irregular

counterparts of the vectors (3.2) will be a specification of their asymptotic behavior in such

regimes.

It is important to notice, however, that the leading asymptotic behavior alone does

not suffice to define the basis of conformal blocks uniquely: Adding arbitrary linear combi-

nations of the vectors |R(n)(z, β)〉 with intermediate dimensions ∆βi
replaced by ∆βi

+ ki,

ki ∈ Z
≥0, would yield vectors which have the same asymptotic behavior. Very similar

problems will arise in overly naive attempts to characterize bases for spaces of irregular
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vectors in terms of their asymptotic behavior when c = (c1, . . . cn) degenerates. One there-

fore needs additional requirements to characterize the elements |I(n)(z, β)〉 of a basis for

the irregular vectors uniquely.

3.2 The proposed solution

To begin with, let us note that it is easy to find inside a generic Verma module Vα0 a unique

solution | I(1)(c1) 〉 to the Ward identities for a rank 1 irregular vector. As we review in

appendix B.1.2, this can be done either by direct solution of the Ward identities, or from

the collision limit of |R(1)(w) 〉 [15]. Thus there is no problem defining a basis of conformal

block with one (or more) rank 1 punctures.

On the other hand, it is easy to see that we can find infinitely many solution |I(2)(c1, c2)〉
to the Ward identities for a rank 2 irregular vector, simply by picking an arbitrary c1
functional dependence for the coefficient of the highest weight vector in Vα0 .

The solution we are going to propose for the problems arising when n > 1 may again

be motivated by reconsidering the regular case. Let us look at the simplest nontrivial case,

n = 2, for example. The vector Ψα2
β,α3

(z2)|α3〉 appearing in the definition (3.2) can be

expanded as sum over Virasoro descendants of |β 〉,

Ψα2
β,α3

(z2) |α3 〉 = z
∆β−∆α2−∆α3
2

∑

I

z
|I|
2 CI L−I |β 〉 . (3.3)

with L−I being monomials in Virasoro generators, and |I| being the L0-weight of L−I .

Moving L−I through Ψα1
α0,β

(z1) by means of (3.1) will yield for |R(n)(z, β)〉 an expression

of the form

|R(2)(z, β) 〉 = z
∆β−∆α2−∆α3
2

∑

I

z
|I|
2 CI L−IΨ

α1
α0,β

(z1) |β 〉

=: z
∆β−∆α2−∆α3
2

∑

I

z
|I|
2 CI L−I |R(1)(z1, β) 〉 , (3.4)

where L−I is obtained from L−I by replacing every Virasoro generator L−k in L−I by

L−k − z−k
1 (z1∂z1 + (1− k)∆α1). We see that the vector |R(2)(z, β)〉 can be expanded as a

sum over vectors that may be called generalized descendants of the vector |R(1)(z, β)〉.
This recursive structure can be used to characterize the vectors |R(2)(z, β)〉 uniquely.

Indeed, imposing the compatibility of the expansion (3.4) with the constraints (2.18) char-

acterizing the vectors |R(2)(z, β)〉 and |R(1)(z1, β) 〉 yields an infinite set of equations on

the coefficients CI in (3.4) which turns out (see appendix B) to fix them uniquely up to an

overall normalization.

Anticipating that the elements |I(2)(c, β)〉 of a basis for the space of irregular vectors

can be obtained from |R(2)(z, β)〉 in a suitable limit, suggests that the vectors |I(2)(c, β)〉
may be characterized by a recursive relation to the vectors |I(1)(c)〉 that is similar to (3.4).

Indeed, we will propose that an analog of (3.4) will be given by an expansion of the form

| I(2)(c, α′′) 〉 = cν22 cν11 e
(α′′−β′)

c21
c2

∞
∑

k=0

ck2 | I(1)2k (c1, β
′) 〉 , (3.5)
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δ β' α''

Figure 2. The graphical representation of a conformal block with two regular punctures, fused in

a channel of dimension δ, and a rank 2 puncture of momentum α′′, realized inside a rank 1 channel

of momentum β′ We denote rank 2 channels with a double arrow. Black dots denote standard or

generalized chiral vertex operators.

where the vectors |I(1)2k (c1, β
′)〉 are generalized descendants of the rank 1 irregular vector

|I(1)(c1, β′)〉. With the term “generalized descendant” we mean linear combinations of

vectors obtained from |I(1)(c1, β′)〉 by acting on it with Virasoro generators or derivatives

with respect to c1. The coefficients in this expansion are strongly constrained by the

equations following from the consistency of (3.5) with the constraints characterizing the

irregular vectors |I(2)(c, α′′)〉 and |I(1)(c1, β′)〉, respectively.
We conjecture that there exists a solution of the resulting equations which determines

the vectors |I(1)2k (c1, β
′)〉 uniquely in terms of |I(1)(c1, β′)〉. We have performed extensive

checks of this conjecture by calculating low orders in the expansion above. A more detailed

discussion is given in appendix B. This conjecture is furthermore supported by our discus-

sion of the collision limits which indicate that bases of irregular vectors characterized by

expansions of the form (3.5) can be constructed by taking certain limits of regular vectors.

3.3 Generalization to higher rank irregular vectors

We furthermore conjecture that such bases of solutions can be built recursively for irregular

vectors of any rank. We find it natural to denote the basis with a notation which resembles

the regular case, as

| I(n) 〉 = Ψr,1
α0,β′(c1)Ψ

1,2
β′,β′′(c

(2)) · · ·Ψn−1,n

β(n−1),α(n)(c
(n)) | In 〉 . (3.6)

Here Ψk−1,k

β(k−1),β(k)(c
(k)) denotes the linear operation of expanding (any descendant of) a

rank k irregular vector of momentum β(k) as the appropriate sum over descendants of a

rank k − 1 irregular vector of momentum β(k−1), and Ψr,1
α0,β′(c1) the realization of (any

descendant of) a rank 1 irregular vector of momentum β′ inside of the Verma module Vα0 .

The elements of such a basis are labelled by the tuple of momenta (β′, . . . , β(n−1)) ∈ C
n−1

which label the intermediate irregular vectors used in the expansion. A diagrammatical

representation for the elements of such a basis is depicted in figure 2.

More formally one may consider the maps Ψk−1,k

β(k−1),β(k)(c
(k)) as intertwining operators

between the irregular modules V(k)
c;α introduced in subsection 2.1.2 as follows: We may

consider Ψ1,2
β,α(c), with c = (c1, c2), for example, as an operators between the spaces

Ψ1,2
β,α(c) : V(2)

c;α → V(1)
c1;β

⊗ C[[ c2/c
2
1 ]]

′ cν22 cν11 e
(α−β)

c21
c2 , (3.7)

– 15 –



J
H
E
P
1
2
(
2
0
1
2
)
0
5
0

where C[[z]]′, the algebraic dual of the polynomial ring C[[z]], is the space for formal Taylor

series in the variable z. The operator Ψ1,2
β,α(c) is supposed to satisfy the intertwining

property

Lk ·Ψ1,2
β,α(c) = Ψ1,2

β,α(c) · Lk . (3.8)

In order to describe the image of V(2)
c;α within V(1)

c;β ⊗ C[[ c2/c
2
1 ]]

′ cν22 cν11 e
(α−β)

c21
c2 , it clearly

suffices to find the vector

Ψ1,2
β,α(c) | I

(2)
c;α 〉 ∈ V(1)

c1;β
⊗ C[[ c2/c

2
1 ]]

′ cν22 cν11 e
(α−β)

c21
c2 , (3.9)

the rest being determined by (3.8). This vector must satisfy the equations following from

the combination of Lk|I(n)c;α〉 = Lk(c;α)|I(n)c;α〉 with (3.8). But these equations are easily seen

to be equivalent to the equations determining the generalized descendants |I(1)2k (c1, β
′)〉

in (3.5) above.

3.4 Other types of bases in the presence of irregular singularities

The constructions above do not exhaust the family of bases for irregular vectors that may

be of interest. One may wish to study conformal blocks of mixed type containing both

regular and irregular singularities like, for example 〈α0|RI(1)(β)〉, where

|RI(1)(β) 〉 = Ψα2
α0,β

(z)Ψr,1
β,α′(c1)| I1 〉 . (3.10)

The constructions above give a representation as a power series in c1/z which characterizes

the conformal blocks 〈α0|RI(1)(β)〉 near c1/z = 0. It is natural to ask if there exist

alternative bases for the solutions to the constraints characterizing |RI(1)(β)〉 which have

a simple behavior in the opposite limit where z/c1 → 0.

And indeed, we are going to propose that there exist solutions of the Ward identities

which admit an expansion over generalized descendants of a rank 1 irregular vector of

momentum β′,

| IR(1)(β) 〉 = zµzcµ1
1 e(α

′−β′)
2c1
z

∞
∑

k=0

zk | I(1)k (c1, β
′) 〉 . (3.11)

The vectors |I(1)k (c1, β
′)〉 are generalized descendants of |I(1)(c1, β′)〉 as introduced in (3.5)

above, with coefficients which only depend on α2, α
′ and β′. We have again found ample

evidence for the conjecture that a solution to the constraints for | IR(1) 〉 of the form (3.11)

exists and is unique.

In order to represent the resulting new basis for the conformal blocks in a way analogous

to (3.6) it may be convenient to introduce a generalization of the vertex operator Ψα
αf ,αi

(z)

that is defined in the usual way in terms of the intertwining property (3.1), but which is

now mapping the irregular module V(1)
c1;αi to V(1)

c1;αf
. We will denote the resulting object as

Ψ
(1)α
αf ,αi(z). The basis |IR(1)(β)〉 defined by means of the expansions (3.11) could then be

represented as

| IR(1)(β) 〉 = Ψr,1
α0,β′(c1)Ψ

(1)α2

β′,α′ (z)| I1 〉 . (3.12)

We have given a diagrammatical representation of the basis |IR(1)(β)〉 in figure 3.
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Δ0

Δ2

β' α'

Figure 3. The graphical representation of a conformal block where a regular puncture and a rank

1 puncture are realized inside a rank 1 channel of momentum β′.

Δ0

Δ1 Δ2

δ Δ3

Figure 4. The sequence of collision limits which give the conformal blocks of rank 2.

This basis will also turn out to be useful as an intermediate step in the analysis

of relations between the basis |R(2)(β)〉 for regular vectors, and the basis |I(2)(β)〉. We

will indicate how vectors |IR(1)(β)〉 can be constructed in a simple, careful collision limit

from the usual |R(2)(β)〉. Furthermore, the power series defining the vectors |IR(1)(β)〉
is now adequate to reproduce the vectors |I(2)(β)〉 in a careful collision limit z2 → 0. A

diagrammatical representation of this sequence of operations is given in figure 4.

The study of the collision limits gives another way to argue that vectors |IR(1)(β)〉
and |I(2)(β)〉 with series expansions (3.5) and (3.11), respectively, really exist, as will be

discussed from two points of view in appendix D.

3.5 Further generalizations

In the case of regular conformal blocks, there are several other useful bases of solutions

for the Ward identities with n punctures. Indeed, the chiral vertex operator Ψα
αf ,αi

(z) can

be readily promoted to a map Vαi
→ Vα ⊗ Vαf

, using Virasoro Ward identities in order to

place descendants of the primary of dimension α at z. Then one can fuse the punctures in

any order, forming a basis labeled by a rooted binary tree

|Rn〉 = Ψβ2

αf ,β1

[

Ψβ4

β1,β3
[· · · ],Ψβ6

β2,β5
[· · · ]

]

(3.13)
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In the case with irregular punctures, one can similarly promote Ψαz

β(n),α(n)(z) to a map

Vα ⊗ In → I ′
n. Exchanging the role of 0 and z, one can thus define a map Ψα(n)

β(n),α
which

fuses a rank n irregular vector at z and a regular vector at the origin into a rank n irregular

module. Then starting from

Ψαw

γ(n),β(n)(w)Ψ
α(n)

β(n),α
|α〉 (3.14)

and colliding w → 0 it may be possible to define a formal power series for Ψα(n)

β(n),α′
(z)|I1〉

which fuses an irregular vector of rank n and an irregular vector of rank 1 into an irreg-

ular module of rank n + 1. Iterating this procedure, one may arrive to the most general

map Ψα(m)

β(n+m),α(n) , fusing irregular punctures of rank n and m into an irregular module of

rank n + m. These maps could be combined to produce very general bases of conformal

blocks with irregular singularities, which explore more general boundary components of

Teichmüller space for several irregular punctures. We leave a more detailed discussion of

such possibilities to the future.

4 Free field construction

As an alternative approach to the construction of bases for spaces of irregular vectors

we will now describe constructions based on the free field representation of the Virasoro

algebra. This will give strong additional support for our previous claims about existence

of irregular vectors with a certain structure of their expansions around the degeneration

limit. It will furthermore give strong hints towards the existence of Stokes phenomena in

such limits.

4.1 Primary fields

At first, we can review the free field construction of chiral vertex operators. We will mostly

consider the case that Q > 2 in the following, corresponding to central charge c > 25.

It turns out, however, that the results that we obtain for this regime have an analytic

continuation w.r.t. the parameter Q which allows one to cover the case c > 1 as well. The

basic building blocks of all constructions will be the following objects:

Normal ordered exponentials:

Eα(z) ≡ exp

(

2α
∑

k<0

i

k
akz

−k

)

e2α(q−αp log z) exp

(

2α
∑

k>0

i

k
akz

−k

)

. (4.1)

Screening charges:

Q(z) ≡ lim
ǫ↓0

∫

Cz,ǫ
dw Eb(w) , (4.2)

with integration contour being the circle Cz,ǫ = {w ∈ C; |w| = eǫ|z|}.
Out of these building blocks we may now construct an important class of chiral primary

fields,

Vα
s (z) =

(

Q(z)
)s

Eα(z) . (4.3)
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These objects are a priori only defined under suitable restrictions on the parameters α, s

and b which ensure that the short-distance singularities arising from the operator product

expansions of the fields in (4.3) are all integrable. Similar objects can be defined for more

general values of the parameters α, b and s by analytic continuation [29]. For explicit

calculations it may also be useful to replace (Q(z))s in (4.3) by expressions of the form
∫

Γ1
dt1 . . .

∫

Γs
dts E

b(t1) · · ·Eb(ts)E
α(z) for a suitable collection of contours Γ1, . . . ,Γn.

The covariant transformation law under conformal transformations,

[Lk,V
α
s (z)] = zk(z∂z +∆α(k + 1))Vα

s (z) , (4.4)

follows from the well-known facts that the fields Eα(z) ≡ Vα
0 (z) satisfy this transformation

law, and that the fields Eb(w) transform as total derivatives due to ∆b = 1.

4.2 Irregular vectors

To begin with, let us introduce coherent states |c;α〉(n) as before, defined by the properties

ak | c ;α 〉(n) = −ick |c;α 〉(n) ,
ak | c ;α 〉(n) = 0 ,

for 0 < k ≤ n ,

for k > n .
(4.5)

and thus satisfy the Ward identities for irregular vectors of degree n. The vectors |c ;α〉(n)
can be considered as coherent states created from the Fock vacuum |α〉 as

| c ;α 〉(n) = exp

(

n
∑

k=1

1

n
cna−n

)

|α〉 . (4.6)

More general irregular vectors may then be constructed by acting on the vectors

|c ;α〉(n) with powers of the operators Qγ

Qγ ≡
∫

γ
dw Eb(w) , (4.7)

where γ is any contour that starts and ends at w = 0 in sectors for which Re(cn/w
n) < 0.

There are n such sectors, explicitly given by

S(n)
k :=

{

w ∈ C ; −π

2
+ 2πk < n arg(w)− (γn − π) < −π

2
+ 2πk

}

, (4.8)

for k = 0, . . . , n. Vectors like

(Qγ1)
s1 · · · (Qγm)

sm | c ;α 〉(n) (4.9)

will then be well-defined for collections of non-intersecting contours γ1, . . . , γm of the type

introduced above. Moreover, the operators Qγ are easily seen to commute with the Vi-

rasoro generators. This implies that the vectors defined in (4.9) behave under conformal

transformation in the same way as the vectors |c ;α〉(n). One can consider a basis of n

non-intersecting contours γl which start and end at w = 0 in the sectors S(n)
k , and thereby

generate families of irregular vectors which depend on n additional positive-integer valued

parameters s1, . . . , sn.
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Figure 5. Examples of screening paths. From left to right, the unique rank 1 example, a rank 2

example with two short paths, another rank 2 example.

Notice that there are several inequivalent choices of set of n contours γl, which give dis-

tinct bases of irregular vectors. For example, one could consider the n “shortest” contours,

joining consecutive sectors. Alternatively, one could use nested sets of longer contours.

Some examples are shown in figure 5.

We can now consider collision and degeneration limits in the free field setup, in order

to match the free-field bases of irregular vectors with the formal power series built from

expansion over descendants of irregular vectors.

4.3 Degeneration limits

4.3.1 Saddle point analysis

In a degeneration limit the singularity of ∂φ(y) goes from n+1 to n. Correspondingly, there

must be a zero yc of ∂φ(yc) which moves to the origin. The approximate position of the

zero is −cn/cn−1 and it is easy to see that the value of φ(yc) diverges as cn → 0. This has

an interesting implication: the zero yc of ∂φ(y) is a saddle for the screening charge contour

integral, and the saddle point approximation is increasingly good in the degeneration limit

for an integration contour corresponding to the steepest descent contour of yc.

This means that any screening contours which can be deformed to the steepest descent

contour will collapse in the degeneration limit, and their contribution can be computed in

the saddle point approximation. The position of the saddle point and the value of ∂φ(y)

on the saddle are not affected much by the presence of other screening charges. The value

on the saddle is controlled by the value φsing(yc) of

φsing(y) =
cn
nyn

+
cn−1

(n− 1)yn−1
+ · · ·+ c1

y
(4.10)

plus logarithmic terms which are affected by the other screening charges.

Let us apply these observations to the study of the behavior of an irregular vector of

rank n of the form

(Qγ1)
s1 · · · (Qγn)

sn | c ;αn〉(n)

in a degeneration limit where cn → 0. Let us assume that γn can be deformed to the

steepest descent contour for the saddle point which is collapsing to the origin, while the
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γ1, . . . , γn−1 are chosen so that they do not receive contributions from that saddle point,

i.e. do not intersect the path of steepest ascent from that saddle. When cn → 0 we will

then get an irregular vector of order n− 1 proportional to

(

Qγ′

1

)s1 · · ·
(

Qγ′

n−1

)sn−1 | c(n−1) ;αn−1〉(n−1) ,

multiplied with a prefactor which contains

e2bsnφsing(yc) = e−2(αn−αn−1)φsing(yc) . (4.11)

The contours γ′1, . . . , γ
′
n−1 are obtained from γ1, . . . , γn−1 by deforming these contours such

that they start and end in the sectors S(n−1)
k . The logarithmic terms give important powers

of cn, which are harder to compute from the free field analysis.

It may be instructive to observe that the free field construction gives a rather concrete

realization of the intertwining operators Ψn−1,n

β(n−1),β(n)(c) introduced in section 3. Indeed, by

expanding

| c ;αn〉(n) =
∞
∑

m=0

cmn
m!

(a−n)
m | c(n−1) ;αn−1〉(n−1) , (4.12)

combined with an application of the saddle-point method as outlined above one will get a

representation for (Qγn)
sn |c ;αn〉(n) as a formal series in powers of cn of the form

(Qγn)
sn | c ;αn〉(n) = e−2(αn−αn−1)φsing(yc)

n
∏

k=1

cνkk

∞
∑

m=0

cmn | c(n−1) ;αn−1;m 〉(n−1), (4.13)

where the |c(n−1) ;αn−1;m 〉(n−1) are generalized descendants of |c(n−1) ;αn−1 〉(n−1). It

follows that the formal expansion in powers of cn of (Qγn)
sn |c ;αn〉(n) represents the inter-

twiner Ψn−1,n

β(n−1),β(n)(c) within the free field representation.

4.3.2 Stokes phenomena

In a degeneration limit where cn/cn−1 → 0, there will be a unique steepest descent contour

γn for the saddle point which tends to the origin in this limit. The remaining contours

can always be assumed to have zero intersection with the contour of steepest ascent, as

illustrated for a case of rank 2 in figure 6. Using such contours in the construction above

will define irregular vectors which have an asymptotic behavior for cn/cn−1 → 0 that is

well-approximated by the formal series (4.13) only in a certain sector of the complex plane

parameterized by cn/cn−1. Indeed, assuming for example that for a given initial value of

the parameters c the steepest descent contour γn ends in the sector S(n)
n , a variation of

the phase of cn−1 may move the phase of the saddle point −cn/cn−1 too far away from the

sector S(n)
n for having a steepest descent contour that would still end in S(n)

n . We conclude

that there are Stokes phenomena in the asymptotic behavior of irregular vectors in the

degeneration limit.

We may observe an analogy with the classification of different natural bases for regular

conformal blocks: Different natural bases are labelled by the boundary components of the

Teichmüller space of the Riemann surface one is working on. The elements of a basis
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Figure 6. A choice of screening paths with good degeneration limit. The open circle denotes the

saddle point, the dashed path is the steepest ascent path.

associated to a given boundary component are characterized by having a simple form of

the expansion in powers of the gluing parameters in the given boundary component only.

They may be analytically continued to other boundary components, but will have a much

more complicated behavior there. There exist, however, linear transformations between

the bases associated to different boundary components that can be decomposed into the

so-called fusion-, braiding- and modular transformation moves.

Considering conformal blocks in cases with irregular singularities, the considerations

above strongly suggest that the data classifying boundary components of the Teichmüller

spaces may include the choices of Stokes sectors. A given basis for the space of conformal

blocks is characterized by having a simple asymptotic expansion only in one particular

Stokes sector. The analytic continuation of the elements of a given basis associated to

one Stokes sector into another sector will be shown in the second part of this series to be

representable as linear combinations of the elements of the basis associated to the other

sector. The chiral bootstrap is in the irregular case therefore characterized by an enlarged

set of data containing analogs of the Stokes matrices in addition to the fusion-, braiding-

and modular transformation matrices (or integral kernels). The second part in this series

will in particular contain explicit calculations of these data.

Let us finally stress one important observation: Vectors like (Qγn)
sn |c;αn〉(n) which

can be expanded as in (4.13) are perfectly well-defined objects. Identifying the expansion

on the right hand side of (4.13) with the formal expansion of the intertwiner Ψk−1,k

β(k−1),β(k)(ck)

suggests that the conformal blocks constructed using this intertwiner do not only exist in

the sense of formal series, but that there exist actual functions for which the algebraic

constructions discussed above give the asymptotic series expansions in suitable Stokes

sectors.

4.4 Collision limits

The free field representation is in many respects particularly well-suited for discussing the

production of irregular vectors in collision limits. In order to illustrate some important

qualitative features we will restrict attention to the case n = 2, leaving the discussion of
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more general cases to the future. Let us start from

Vα1
s1 (z1)V

α2
s2 (z2)|α3 〉 . (4.14)

The normal ordered exponential fields satisfy exchange relations of the form

Eα1(z1)E
α2(z2) = e−2πiα1α2Eα2(z2)E

α1(z1) , (4.15)

valid for |z1| = |z2|, arg(z1) > arg(z2). Introduce the partial screening charges

QI :=

∫ z1

z2

dw Qb(w) , QI′ :=

∫ ẑ2

z1

dw Qb(w) , (4.16)

where ẑ2 := e2πiz2. The exchange relation (4.15) allows us to move the normal ordered

exponentials in the definition of (4.14) to the right of the screening charges. Assuming

arg(z1) > arg(z2) we thereby find

[

Q(z1)
]s1

Eα1(z1)
[

QI + QI′
]s2

Eα1(z2) = (4.17)

=
[

Q(z1)
]s1 [e−2πibα1QI + e2πibα1QI′

]s2
Eα1(z1)E

α2(z2) .

In this form it becomes straightforward to take the collision limits producing irregular

vectors of degree 2. The collision limits of Eα1(z1)E
α2(z2)|α3〉 produce vectors |c;α′′〉(2)

with α′′ = α1 + α2 + α3. It is furthermore easy to show that the partial screening charge

QI becomes the operator Qγ with contour γ which connects sector S2 with S1, while QI′

turns into the operator Qγ′ associated to the contour γ′ which connects S1 with e2πiS2.

The operator Q(z1) becomes an operator Qξ associated to a contour ξ which starts in S1,

encircles w = 0 and ends in e2πiS1.

What is interesting to observe is the fact that there are two different ways to take the

limit of (4.17) which yield either

[

Qξ

]s1[
Qγ

]s2 | c;α′′ 〉(2) , or
[

Qξ

]s1[
Qγ′

]s2 | c;α′′ 〉(2) , (4.18)

as a result, depending on whether Im(α1) tends to ±∞ in the limit.

One of the main points to be observed here is the fact that after multiplying with some

simple numerical factors we get vectors that stay finite in the collision limits.

5 Conformal blocks from solutions of null vector equations

Degenerate fields in Liouville theory satisfy differential equations. We will use these dif-

ferential equations in order to get an alternative approach to the definition of bases in the

space of conformal blocks, the calculation of their series expansions, and for the study of

the collision limits producing irregular singularities.

This is necessarily somewhat tricky, as generic conformal blocks do not satisfy a closed

system of partial differential equations. The idea may be informally described as follows:

Inserting additional degenerate fields into the conformal block gives modified conformal

blocks that satisfy the differential equations following from null vector decoupling. These
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differential equations can be used to obtain power series expansions for the modified con-

formal blocks. The original conformal block can be recovered in a certain limit where the

additional degenerate fields fuse with some of the primary fields inserted into the modified

conformal blocks. In order to calculate this limit it suffices to know the braiding transfor-

mations involving degenerate fields, which is explicitly known. We will show how this idea

can be used to calculate series expansions for conformal blocks involving both regular and

irregular vertex operators.

5.1 Degenerate chiral vertex operators

Let us consider the special chiral vertex operators

V±(y) ≡ Ψ
−b/2
β′,β (y) . (5.1)

It is well-known that these vertex operators satisfies the operator differential equation

1

b2
∂2

∂y2
V±(y)+ : T (y)V±(y) : = 0 , (5.2)

with normal ordering : T (y)V±(y) : defined as

: T (y)V±(y) :≡
∑

k<−1

y−k−2LkV±(y) +
∑

k≥−1

y−k−2V±(y)Lk . (5.3)

The operator differential equation (5.2) is equivalent to the decoupling of null vectors in the

Verma module of descendants of V±(y). We will therefore call the equations following from

(5.2) null vector equations. Note in particular that conformal blocks containing insertions

of V±(y) like

F (y) ≡ F (y; z1, z2) :=
〈

α0 |Ψα1
α0,β′(z1)V+(y)Ψ

α2
β,α3

(z2) |α3

〉

, (5.4)

will satisfy a partial differential equation of second order in ∂
∂y which is obtained by moving

the Virasoro generators in : T (y)V±(y) : to the left or right until they hit the highest weight

vectors. The resulting differential equation is of the generic form

(

1

b2
∂2

∂y2
+ T (y)

)

F (y; z1, z2) = 0 , (5.5)

where T (y) is a first order differential operator which for the case (5.4) above is explicitly

given as

T (y) :=
∆1

(y − z1)2
+

∆2

(y − z2)2
+

∆3

y2
+

1

y − z1

z1
y

∂

∂z1
+

1

y − z2

z2
y

∂

∂z2
− 1

y

∂

∂y
.

We are using the notations ∆αr = αr(Q− αr), r = 0, 1, 2, 3, δb = −1
2 − 3

4b
2.
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5.1.1 Fusion rules

The null decoupling condition can only hold if one restricts the Liouville momentum β to

jump across the degenerate field as β′ = β ± b/2. Indeed, if we apply this relation to the

leading term in the expansion of V±(z)|∆β〉 and denote δ = ∆β′ −∆β −∆−b/2, we get the

constraint δ(δ − 1 − b2) + b2∆β = 0. This is solved by δ = bβ or δ = b(Q − β), which

means β′ = β − b/2 or β′ = β + b/2, respectively. It is known that this condition is also

sufficient for V (z) to satisfy the null vector equation. We will also denote the solutions

with β′ = β ∓ b/2 as

V±(y) ≡ Vβ;±(y) ≡ Ψ
−b/2
β∓b/2,β(y) . (5.6)

Notice that δ controls the monodromy of V (y) around the origin. This fact is of crucial

importance, as it represents a link between the characterization of bases for the spaces of

conformal blocks in terms of the series expansions for solutions of the null vector equations

on the one hand, to the characterization in terms of Verlinde line operators [4, 9] on the

other hand. The latter is closely connected to the characterization of bases for the spaces

of conformal blocks by means of the geodesic length operators in quantum Teichmüller

theory.

We can easily repeat the analysis to find the constraints appropriate for the vertex

operator V (1)(y) which represents the insertion of a degenerate field near a rank 1 irregular

vector as a sum over generalized descendants of the rank 1 irregular vector. Thus in order

for V (1)(y) to satisfy the null vector decoupling, it must shift the Liouville momentum of

the irregular puncture by ±b/2. We can thus define

V
(1)
± (y) ≡ V

(1)
β′;±(y) := Ψ

−b/2(1)
β′∓b/2,β′

(y) . (5.7)

This reasoning readily extends to the vertex operators V
(n)
± (y).

5.1.2 Monodromy and formal monodromy

Notice an important fact. Our expansion (3.11) for V
(1)
± (z) has a prefactor yνcν11 e

(β′−α′)
2c1
y

where

ν = −2∆−b/2 − 2(β′ −Q)(β′ − α′) = 1 + 3/2b2 ∓ b(β′ −Q) (5.8)

which means either ν = bα′ or ν = b(2Q − α′). The parameter ν controls the formal

monodromy of the asymptotic expansion. This is a rather intuitive result. If the irregular

puncture arises from the collision of two regular punctures, of Liouville momenta which

add to α′, it appears that the formal monodromy around the irregular puncture is simply

the sum of the monodromy eigenvalues around each individual puncture.

The formal monodromy is a very important piece of information. We expect it to

provide a link between the bases for the irregular conformal blocks constructed in this

paper and the irregular generalization of the quantum Teichmüller theory.

Furthermore, this confirms the expectation that the solutions built from V
(1)
± (y) may

be well-defined beyond the formal power series definition, but depend on a choice of Stokes

sector where the expansion would be valid. In the case of the degenerate insertion, the
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exponential prefactor exp± bc1
y suggests that there are two possible choices of Stokes sector:

sectors including either of the two half-lines y
c1

∈ ±iR+.

Finally, we can extend the formal monodromy statement to any rank k. We expect

that for an irregular puncture of rank k and momentum αk at the origin, the degenerate

insertion will shift the Liouville momentum by ±b/2, and will have formal monodromy

ν = bαk or ν = b((k + 1)Q− αk). We can test this at the leading order of the y expansion

for V
(k)
± (y)|Ik〉. The null decoupling constraint takes the form

(

∂2
y − b2y−1∂y

)

+ b2T≫(y) (5.9)

where with T≫(y) we denote the singular part of T (y) near the irregular vector, excluding

the L−1 piece. This constraint can be patiently applied to the ansatz

yν exp±
k
∑

n=1

cn
nyn

(5.10)

to verify that this ansatz can be the starting point of a systematic asymptotic expansion

of the solution. We refer the reader to section C.2 for an example of such systematic

expansion, at rank 2.

5.2 Construction of bases with the help of null vector equations - the regular

case

We now want to explain in some more detail how to use the null vector equations in order

to construct certain bases for the space of conformal blocks. As indicated above, the basic

idea is to first consider conformal blocks which contain degenerate fields V±(y), exploit
the information given by the differential equations that such conformal blocks satisfy, and

finally remove the degenerate fields by taking some limit which produces conformal blocks

without degenerate fields. We’ll here give an outline of this procedure, leaving several

details to appendix C.

Let us explain the basic idea a bit more precisely in the case n = 0. The object of our

interest is the expansion of the conformal block

F (z1, z2) :=
〈

α |Ψα1
α,β(z1)Ψ

α2
β,α3

(z2) |α3

〉

(5.11)

in powers of z2. The scaling properties of this conformal block imply the general form

F (z1, z2) = z
∆α−∆α1−∆α2−∆α3
1

∞
∑

k=0

(

z2
z1

)χ+k

Fk . (5.12)

As a technical tool for its study we shall modify the conformal blocks by additional

insertions of the special chiral vertex operators V±(y).
The differential equations satisfied by F (y; z1, z2) will turn out to have a unique solu-

tion in the form of a double power series in z2/y and y/z1 such that

F (y; z2, z1) =
∞
∑

k=0

(

z2
y

)χ+k

Fk(y; z1) , Fk(y; z1) = zκ1

∞
∑

l=0

(

y

z1

)η+l

Fk,l , (5.13)
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where

κ = ∆0 −∆1 −∆2 −∆3 − δb , χ = ∆β −∆α2 −∆α3 , η = bβ . (5.14)

This form of the series as specified in (5.13) is necessary for the solution to be identified with

the conformal block F (y; z1, z2). It follows from the representation theoretic construction

of the conformal blocks by summing over states from fixed intermediate representations.

To avoid confusions, let us note that it is not at all straightforward to find series

expansions in z1/y that could be identified with the conformal blocks E (y; z2, z1) :=
〈

α0|V±(y)Ψ
α1

α0±b/2,β(z1)Ψ
α2
β,α3

(z2) |α3

〉

. The differential equation does not give any con-

straints on the leading coefficients Ek,0 of an expansion like

E (y; z2, z1) =
∞
∑

k=0

(

z2
y

)χ+k

Ek(y; z1) , Ek(y; z1) = zκ1

∞
∑

l=0

(

z1
y

)η′+l

Ek,l . (5.15)

It is therefore necessary for us to start from an expansion of the form (5.13), and

continue analytically to y → ∞ afterwards to recover the conformal block F (z1, z2) we

are after. As a tool for carrying out this analytic continuation we may use the exchange

relation

Ψα1

α0,β−b/2(z1)Vβ;+(y) = (5.16)

= B+(s)Vα0+b/2;+(y)Ψ
α1

α0+b/2,β(y) +B−(s)Vα0−b/2;−(y)Ψ
α1

α0−b/2,β(y) ,

valid for |z1| = |y| furthermore allows us perform the analytic continuation to |y| > |z1|.
The coefficients B±(s) in (5.16) depend on s := sgn(arg(z1/y)), as usual. One may then

study the limit y → ∞ using the OPE

〈

α0 |Vα0+ǫb/2;ǫ(y) =
〈

α0 + ǫb/2 | y 1
2
(2b2+1)+ǫb(α0−Q/2)

(

Cǫ +O(y−1)
)

. (5.17)

Assuming that ℜ(2α0 −Q) > 0, the term with ǫ = 1 in (5.17) dominates for y → ∞. Let

us assume that s = 1 and set B+ ≡ B+(1). Assuming furthermore that α = α0 + b/2, we

may then calculate the sought-for coefficients Fk as

Fk =
1

C+B+
lim

y/z1→∞
y−b(α0+b/2)zk−κ

1 Fk(y; z1) . (5.18)

We want to show that (5.18) leads to a purely algebraic procedure for the calculation of the

expansion coefficients Fk. To this aim let us note that the representation theoretic definition

of F (y; z1, z2) via (5.4) yields power series in y/z1, z2/z1 convergent for |z1| > |y| > |z2|.
The expansion in powers of z2 can be obtained from (3.4). We thereby get an expansion

for F (y; z1, z2) of the form (5.13). The coefficient functions Fk(y; z1) are proportional to

the conformal blocks

Fk(y; z1) = yk 〈α0 |Ψα1

α0,β−b/2(z1)V+(y) |β, vk 〉 , (5.19)

where |β, vk 〉 is the descendant
∑

I;|I|=k CIL−I |β 〉. By moving L−I to the left in (5.19)

above one may rewrite Fk(y; z1) in the form

Fk(y; z1) := ykDk(y, z1)F0(y; z1) , (5.20)
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where the differential operator Dk(y, z1) :=
∑

I;|I|=k CIL−I(y, z1) creating Gk from G0 is

obtained from
∑

I;|I|=k CIL−I by replacing

L−k → −y−k(y∂y +∆−b/2(1− k))− z−k
1 (z1∂z1 +∆1(1− k))

from the left to the right. The differential operator Dk(y, z1) is of the form

Dk(y, z1) =
k
∑

l=0

(

z1
y

)l k
∑

m=0

Dk;l,m

(

y
∂

∂y

)m

, (5.21)

as follows easily from its scaling behavior. The relation (5.20) will allow us to calculate

the asymptotics F (y; z1, z2) in terms of the asymptotics of the lowest order term F0(y; z1)

as soon as we have determined the differential operator Dk. Having constructed the full

power series expansion (5.13) of F (y; z1, z2) one can view the relation (5.20) as a linear

equation for the differential operator Dk(y, z1). It is equivalent to the linear system

k
∑

m=0

k
∑

l′,l′′=0
l′+l′′=l

Dk;l′,m (η + l′′)mF0,l′′ = Fk,l , (5.22)

of equations for the coefficients Dk;l,m of Dk(y, z1). This is an infinite system of equations

for a finite number of unknowns, so uniqueness of the solutions seems clear, while existence

may not be obvious. The existence of solutions is here assured by the representation

theoretic construction of the conformal blocks, as discussed in the above.

Inserting the relation (5.20) between Fk(y; z1) and F0(y; z1) into (5.18) gives us the

relation

Fk = y−bα · Dk(y; 0) · ybα =
k
∑

m=0

Dk;0,m (bα)m , α = α0 + b/2 . (5.23)

As the coefficients Dk;l,m can be calculated from the expansion coefficients Fk,l by solv-

ing (5.22), we thereby get a procedure to calculate the coefficients Fk from the differential

equation satisfied by the modified conformal blocks F(y; z1, z2).

5.3 The case of an irregular singularity or rank 2

We now want to consider the insertion of a degenerate vertex operator in the conformal

block with a regular singularity at infinity, and a rank 2 irregular singularity at the origin.

The main idea is to use the degenerate field as a probe of the internal structure of the

irregular singularity.

In order to make this idea more precise we will show that there exists a unique solution

to the null vector decoupling equations that can be identified with the conformal blocks

denoted as

F (2)(y; c1, c2) := 〈α0 |Ψr,1
α0,β′−b/2(c1)V

(1)
+ (y)Ψ1,2

β′,α′′(c) | I2(α′′) 〉 , (5.24)
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using the notations of section 3. This should a priori not be confused with

E(2)
± (y; c1, c2) := 〈α0 |V±(y)Ψ

r,1
α0±b/2,β′

(c1)Ψ
1,2
β′,α′′(c) | I2(α′′) 〉 . (5.25)

The conformal blocks defined in (5.24) and (5.25) turn out to be closely related, however.

F (2)(y; c1, c2), initially being characterized near y → 0 by an asymptotic double series in

powers of y/c1 and c2/yc1, can be analytically continued into the region where y → ∞.

As we will show later in this subsection, one may represent the result of this analytic

continuation as a linear combination of the two conformal blocks E(2)
± (y; c1, c2) defined

in (5.25).

To begin with, let us use the expansion (3.5) to represent the conformal blocks

E(2)
± (y; c1, c2) as series in powers of c2. The resulting expansion takes the form

E(2)
± (y; c1, c2) = cν22 cν11 e

(α′′−β′)
c21
c2

∞
∑

k=0

ck2 E(2)
k;±(y; c1) (5.26)

where E(2)
k;±(y; c1) := 〈α0 |V±(y) | I(1)2k (c1, β

′) 〉 . (5.27)

Assuming that the vectors | I(1)2k (c1, β
′) 〉 can be represented as generalized descendants of

| I(1)(c1, β′) 〉, as we had proposed in section 3, we may move the Virasoro generators in

| I(1)2k (c1, β
′) 〉 to the left and get recursive relations of the form

E(2)
k;±(y; c1) = Dk(y, c1) E(2)

0;±(y; c1) . (5.28)

Below we will show that E(2)
0;±(y; c1) can be expressed in terms of the confluent hyperge-

ometric functions. Taking into account (5.28) allows us to conclude that the coefficients

E(2)
k;±(y; c1) are analytic multivalued functions in y for all values of k.

We can then find a linear combination of E(2)
0;+(y; c1) and E(2)

0;−(y; c1),

F (2)
0 (y; c1) = K

(2)
1 E(2)

0;+(y; c1) +K
(2)
2 E(2)

0;−(y; c1) , (5.29)

that has the correct leading asymptotics for y → 0 to be identified with the leading term

of the expansion in powers of c2 of the conformal blocks F (2)(y; c1, c2) we are interested in,

F (2)(y; c1, c2) = cν22 cν11 e
(α′′−β′)

c21
c2

∞
∑

k=0

ck2 F (2)
k (y; c1) . (5.30)

The leading asymptotics of F (2)
0 (y; c1) should be proportional to e

−b
c2
2y2

−b
c1
y ybβ

′

. Up to a

normalization factor, there is going to be a unique solution which has this property. It

furthermore follows from (5.28) that we have

F (2)
k (y; c1) = K

(2)
1 E(2)

k;+(y; c1) +K
(2)
2 E(2)

k;−(y; c1) , (5.31)

for all values of k. As in the discussion of the regular case before, we can calulate the

differential operators Dk(y, c1) in (5.28) with the help of the differential equations, and
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ultimately recover the conformal block 〈α |Ψr,1
α0,β′(c1)Ψ

1,2
β′,α′′(c2) | I2(α′′) 〉 by sending y → ∞

in the end.

The lesson we want to extract from these observations is that alternative ways to define

bases for the spaces of irregular conformal blocks can be found by probing the internal

structure of irregular vectors with the help of degenerate fields. The parameters labeling

the elements of such bases are identified with the parameters describing the asymptotic

behavior of the degenerate fields for y → 0, here in particular by the parameter β′. The

details are worked out for the three main examples at hand in appendix C.

6 Physical correlation functions

In the present section we are going to formulate our main conjectures concerning physical

Liouville correlation functions with irregular singularities.

6.1 Existence of collision limits

We conjecture that the collision limits exist on the level of physical correlation functions

after dividing by the corresponding free field correlator. In the case of a four-point function

we conjecture in particular existence of the limit

lim
(0)→(2)

〈〈α0 |Vα1(z1, z̄1)Vα2(z2, z̄2) |α3 〉〉µ
〈〈α |Vα1(z1, z̄1)Vα2(z2, z̄2) |α3 〉〉0

, (6.1)

where the correlator in the denominator is evaluated in the free boson theory obtained

from Liouville theory by setting µ = 0 and α = α1 + α2 + α3. The result represents an

overlap of the form

Φ(2)(c1, c2;α0, α) = 〈〈α0 | I(2)(c2, c1;α) .〉〉 , (6.2)

The vector | I(2)(c2, c1;α) 〉〉 represents the insertion of an irregular singularity of order 2

into physical correlation functions.

The evidence we may offer in favor of this proposal is obtained from two different

sources:

In appendix D we demonstrate in two different ways that the series expansions for the

conformal blocks can be rearranged in such a way that we have well-defined collsion limits

order by order in the series expansions. The first argument is essentially based on the

observation that the Ward identities which define the series expansions for the conformal

blocks have a well-defined limit after extracting the divergent free-field parts. The second

argument discussed in appendix D uses the null vector equations. After factoring out the

free field part, one obtains differential equations that have a well-defined limit. The details

of these arguments turn out to be delicate, however, as one needs to consider conformal

blocks constructed from intermediate representations whose highest weights diverge. We

refer to appendix D for further details.

A rather different approach to the existence of collision limits may be based on the

free field representation described in section 4. Whenever this representation can be used,

it will make our claim nearly obvious. The collision limit is defined in such a way that the
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numbers of screening charges stay constant. A reordering as done explicitly in (4.17) above

will therefore identify the operator product expansion of normal ordered exponentials as

the origin of all divergencies. What needs further discussion, though, is the treatment of

the cases where noninteger screening powers appear. In the regular case one may use the

observation [29] that Qγ is a positive self-adjoint operator for γ being any interval on the

unit circle. It follows that (Qγ)
s is well-defined even for non-integer values of s. It is not

completely clear to us how to generalize this approach to the irregular case at the moment

as the positivity may be lost.

6.2 Expansion into conformal blocks

We conjecture that the “irregular correlation function” Φ(2)(c1, c2;α0, α) can be expanded

into irregular conformal blocks as follows:

Φ(2)(c1, c2;α0, α) =

∫

Q+iR

dβ C(2)(α0, α, β)F
(2)
β (c1, c2;α0, α)F

(2)
β (c̄1, c̄2;α0, α) , (6.3)

where

• F
(2)
β (c1, c2;α0, α) are conformal blocks which have an asymptotic expansion in powers

of c2/c
2
1 of the form

F
(2)
β (c1, c2;α0, α) = c∆0−∆α

1

(

c2
c21

)ν2

e
−(β−α)

c21
c2

(

1+

∞
∑

k=1

(

c2
c21

)k

F
(2)
β (k;α0, α)

)

, (6.4)

where 2ν2 = (β − α)(3Q − 3β − α), and the higher orders in the expansion are

determined by the procedures described in sections 3 or 5, respectively,

• the conformal blocks F
(2)
β (c2;α0, α) := F

(2)
β (1, c2;α0, α) are multivalued analytic func-

tions of c2 on P
1 \ {0,∞} which can be characterized uniquely by having the asymp-

totic expansion (6.4) for c2 → 0 in a Stokes sector of width π/2,

• the structure constants C(2)(α0, α, β) are explicitly given by the following expression:

C(2)(α0, α, β) = Λ
1
b
(Q−α0−α) Υ2

0Υ(2α0)

Υ(α0 + β −Q)Υ(β − α0)Υ(α− β)
22∆0−2∆β−∆β−α

(6.5)

where Λ := πµγ(b2)b2−2b2

• The “irregular correlation function” Φ(2)(c2;α0, α) ≡ Φ(2)(1, c2;α0, α) is real analytic

as function of c2 on P
1 \ {0,∞}, and the expansion of the correlation function into

conformal blocks is independent of the choice of the Stokes sector used to characterize

the conformal blocks by their asymptotic expansion (6.4).

The last property is an analog of the crossing symmetry or modular invariance of the

physical Liouville correlation functions in the presence of an irregular singularity.

It is important to note that the precise form of the structure functions C(2)(α0, α, β)

is linked to the precise definition of the conformal blocks F
(2)
β (c1, c2;α0, α). By means
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of analytic reparameterizations of the variables c1 and c2 one could change the form of

C(2)(α0, α, β), but the series expansion of F
(2)
β (c1, c2;α0, α) would also be changed. We

had fixed the precise definition of the series F
(2)
β (c1, c2;α0, α) in section 2 or, equivalently

in section 5.

This conjecture would follow from the existence of the collision limits, and the fact that

the collision limits will preserve the single-valuedness of the physical correlation functions.

The precise form of the structure functions C(2)(α0, α, β) proposed in (6.5) above was

determined by carefully analyzing the collision limits. The details of this analysis are

described in appendix D.

7 Gauge theory perspective

7.1 Overview

The purpose of this section is to discuss a possible application of our results on 2d CFT

to the study of certain four-dimensional N = 2 gauge theories. It can be seen as a natural

generalization of the relations between expectation values of supersymmetric observables

in a certain class of SU(2) gauge theories and correlation functions in Liouville theory

discovered in [1]. The gauge theories in question are associated to Riemann surfaces C,

possibly with punctures [14, 16]. In a certain limit the above-mentioned relations reduce

to relations between the Seiberg-Witten geometry describing the IR physics of the relevant

gauge theories and the Teichmüller theory of the surfaces C [14, 31].

We propose that similar relations exist between correlation functions in Liouville the-

ory with irregular singularities and gauge theories of Argyres-Douglas type. Even if the

lack of a Lagrangian formulation of the Argyres-Douglas theories makes it difficult to di-

rectly generalize the calculations supporting the correspondence between gauge theories

and Liouville theory, we may still describe the IR physics of the Argyres-Douglas theo-

ries with the help of a variant of Seiberg-Witten theory. Our proposed relation between

Argyres-Douglas theories and Liouville theory with irregular singularities will be supported

by showing that it implies a relation between the IR physics of the Argyres-Douglas theories

and the Teichmüller theory for Riemann surfaces with irregular singularities that naturally

generalizes the previously found relations.

The link between Seiberg-Witten- and Liouville theory can be described a bit more

concretely as follows. In the relevant limit the conformal blocks turn into the prepotential

of the gauge theory, schematically

Z ∼ eF . (7.1)

The expectation value of the energy-momentum tensor of Liouville theory furthermore

becomes the quadratic differential φ on C which defines the Seiberg-Witten curve λ2 = φ.

The fact that insertions of the energy-momentum tensor generate derivatives ∂τa of the

conformal blocks with respect to the complex structure moduli of C turns into the statement

that the quadratic differential φ describes the behavior of the prepotential under variations

of the gauge couplings,

ua = −∂τaF , (7.2)
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where ua can be computed from φ and the Beltrami differentials µa representing ∂τa by

ua =

∫

C
µaφ. (7.3)

The relation (7.2) generalizes well-known relations in Seiberg-Witten theory going back

to [6]. We will review the derivation of this result from Seiberg-Witten theory and extend

it to the case of Argyres-Douglas theories. It will coincide with the appropriate limit of

the conformal Ward identities (2.8) in the presence of irregular singularities.

In this section we will also go through the gauge theory version of our collision limits

and decoupling limits, to give a four-dimensional interpretation of the results of the previous

sections.

Our main example will be the behavior of the SU(2) Nf = 4 gauge theory, which

corresponds to the four-punctured sphere, under the collision limits which reduce it to

a famous Argyres-Douglas (Nf = 3 in [3]) theory, which corresponds to the correlation

function with one irregular puncture of rank 2 and one regular puncture. We will also

give a physical interpretation to the ansatz for our bases of solutions of irregular Ward

identities.

Thus, we leverage the 2d CFT description in order to both probe the behavior of

protected correlation functions of asymptotically free four-dimensional N = 2 gauge theo-

ries at strong coupling, and compute protected correlation functions for Argyres-Douglas

theories.

7.2 The six-dimensional perspective

The class of four-dimensional gauge theories with N = 2 supersymmetry we are considering

(“class S”) of four dimensional gauge theories arises from the twisted compactification on

a Riemann surface of six-dimensional field theories with (2, 0) superconformal symmetry.

The six-dimensional origin represents an important source of inspiration for the study of

the theories in class S.
The rules of the twisted compactification allow one to insert codimension two half-BPS

defects at points on the Riemann surface. The six-dimensional theory is labeled by a choice

of simply-laced Lie algebra g. Thus theories in class S are labelled by the choice of Lie

algebra, of Riemann surface C with punctures, and of the type of punctures.

Many conventional four-dimensional N = 2 gauge theories admit an alternative de-

scription as theories in the class S. The main advantage of the six-dimensional description

of the theory is that several protected quantities in the four-dimensional theory have an

hidden geometric description in six dimensions. In particular, there is an exact correspon-

dence between certain correlation functions of the four-dimensional theory and correlation

functions or conformal blocks on C of two-dimensional non-rational CFTs. In some cases,

both sides of the correspondence are fully computable, and match. In many cases, the

two-dimensional CFT allows us to compute answers which are much harder to get at in the

four-dimensional gauge theory. Sometimes, the four-dimensional gauge theory interpreta-

tion can help uncover hidden truths about two-dimensional CFTs, or forces us to ask new

questions.
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Much of the flexibility in the construction arises from the possibility to choose which

codimension two half-BPS defects are placed at points (“punctures”) in C. Each of the six-

dimensional theories comes with a standard array of “regular” defects whose existence can

be gleaned from the basic properties of the six-dimensional theory. Theories of class S with

regular defects typically have four-dimensional superconformal symmetry in the IR. Most

regular defects carry flavor symmetry currents localized at the defect, in some subalgebra

h of g which coincide with g itself for a “full” regular puncture. In four-dimensional N =

2 supersymmetry, every flavor symmetry current is associated with a mass deformation

parameter. The regular punctures typically give rise to standard highest weight vertex

operators in the dual two-dimensional CFTs. The mass deformation parameters map to

quantities such as the conformal dimension of the vertex operators.

Regular punctures hardly exhaust the set of possible codimension two defects in the

six-dimensional theory. Indeed, the mere existence of regular punctures with a non-Abelian

flavor symmetry, say g for simplicity, on their world-volume allows one to define many more

defects: add four-dimensional degrees of freedom at the defect, with flavor symmetry g,

and add g four-dimensional gauge fields coupled to both the defect flavor symmetry and

the 4d degrees of freedom. As long as the β function of the g gauge theory is negative

or zero, this is a UV-complete definition of a new type of defect. Notice that the flavor

currents for a full regular puncture cancel half of the beta function from the 4d gauge fields,

so there is some scope for adding extra degrees of freedom at the puncture.

This general class of defects should map to some local defect in the two-dimensional

CFT side of the duality, which is not a standard highest weight operator. Following the

dictionary of the duality, it is natural to expect that the procedure of weakly “gauging

in” extra degrees of freedom into a regular puncture should correspond to a “sewing in”

description of the new local defect, akin to an OPE: one can cut a small circle around the

defect, and insert a complete set of states for the 2d CFT on the circle. The power series

expansion in the sewing parameter should match the instanton expansion of the gauge

theory partition function. The coefficients in the expansion depend on the choice of four-

dimensional degrees of freedom which are gauged in, which affect the instanton measure.

The duality becomes useful if the new defect can be given an independent definition

directly in the 2d CFT. Then CFT methods allow us to probe the properties of the

system away from weak coupling, and possibly to compute the correlation functions of the

four-dimensional degrees of freedom which were gauged in.

There is a useful class of non-regular defects which have a simple, if unfamiliar, inde-

pendent description in the 2d CFT: they correspond to local operators at which the Ward

identities for the energy-momentum tensor and the other currents of the CFT have poles of

unusually high degree. We will denote such defects as “irregular defects”. Irregular defects

appear naturally whenever one considers scaling limits in the four-dimensional gauge the-

ory, where some UV parameters such as masses or other scales in the UV description are

sent to infinity, but UV gauge couplings are tuned so that the IR effective gauge couplings

are kept finite.

Simple scaling limits can be used to define asymptotically free theories as a limit of

superconformal field theories in the class S. One simply sends the mass of some hyper-
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multiplet flavors to infinity while keeping the renormalized gauge couplings finite. More

refined scaling limits give rise to situations where the extra degrees of freedom at the defect

define a four-dimensional theories of the Argyres-Douglas type, which is a rather mysteri-

ous non-trivial superconformal, strongly interacting fixed point with no exactly marginal

couplings. Currently, not much is known about AD theories, besides their Seiberg-Witten

geometry.

We will focus on the six dimensional theory associated to the sl(2) algebra, and the

Liouville two-dimensional CFT, based on the Virasoro algebra. The A1 six-dimensional

theory admits a single basic codimension two half-BPS defect, the full regular defect with

su(2) flavor symmetry, which maps to the standard highest weight vertex operator in

Liouville theory. Regular A1 theories admit simple four-dimensional descriptions as SU(2)

gauge theories with exactly marginal gauge couplings. The space of gauge couplings can

be identified with the space of complex structure deformations of the Riemann surface C.

At first, we can add asymptotically free SU(2) gauge groups to the construction. This

can be done by decoupling some fundamental matter in regular A1 theories. If one follows

the manipulation of parameters in detail, the result is that on the Liouville theory side

of the story two standard vertex operators will collide to give a new operator in Liouville

theory at which the stress tensor Ward identity has poles of degree 3 or 4, that is a rank 1/2

or 1 irregular vector. The behavior of the correlation functions when regular singularities

approach irregular singularities, which we have learned to describe through new bases of

irregular conformal blocks, corresponds to a strong coupling region for the asymptotically

free gauge groups. This is precisely the regime which is relevant for further decoupling

limits which produce AD theories.

There is a tower ADn of Argyres-Dougles theories with SU(2) flavor symmetry which

can be “gauged in” at a regular puncture to define “irregular” A1 theories. They contribute

to the beta function of the new SU(2) gauge group slightly less than the amount required

for conformal symmetry. Thus the “gluing” SU(2) gauge group is still asymptotically free.

They are expected to correspond to irregular vertex operators in Liouville theory of rank

higher than 1.

7.3 Relations between 4d gauge theory and 2d CFT - a dictionary

There is a well developed dictionary between geometric objects associated to a Riemann

surface C with genus g and n regular punctures, and protected quantities in the corre-

sponding regular A1 theory Tg,n. We will denote it as “the 2d dictionary” in this section.

7.3.1 Lagrangian formulation

The class of (mass deformed) N = 2 superconformal gauge theories which we denote as

regular A1 theories admits Lagrangian descriptions based on SU(2)3g−3+g gauge groups

coupled to fundamental, bifundamental, trifundamental and adjoint matter hypermulti-

plets. It is useful to group the matter hypermultiplets in 2g−2+n blocks of eight complex

fields, where each block carries three independent SU(2) doublet indices.

Each of the SU(2) gauge groups should have zero beta function. This is accomplished

by requiring each SU(2) gauge group to gauge the diagonal combination of two of the SU(2)
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flavor symmetries of the matter hypermultiplets. If the two SU(2) flavor symmetries belong

to two distinct blocks, the two blocks behave as four fundamental flavors, and cancel the

beta function. If the two SU(2) flavor symmetries belong to the same block, the block

behaves as the sum of an adjoint and a singlet, and again it cancels the beta function. As

the beta function is zero, the complexified gauge coupling τ of the SU(2) gauge theory is

exactly marginal. It is useful to define the corresponding instanton factor qa = eπiτa .

Clearly, the structure of the Lagrangian is captured by an unrooted binary tree, where

each block of hypermultiplets is a trivalent vertex, each gauge group an internal edge, and

each residual flavor group is an outer edge. Different topologies of the tree correspond

to different Lagrangian descriptions of the same theory Tg,n, related by S-dualities. The

parameter space of exactly marginal deformations of Tg,n is identified with the Teichmuller

space of complex structure deformations of C. Different Lagrangians correspond to different

ways to sew the Riemann surface from a pair of pants decomposition, labelled by the

corresponding unrooted binary tree. The instanton factors are mapped to the sewing

parameters, so that the Lagrangian is weakly coupled and useful when the Riemann surface

is almost degenerate to a collection of three-punctured spheres.

7.3.2 Seiberg-Witten theory

The Lagrangian description makes it clear that Tg,n should have 3g − 3 + n dimension 2

Coulomb branch order parameters ur = TrΦ2
r , and n dimension 2 Casimirs di = TrM2

i for

the mass parameters Mi of the ungauged SU(2) flavor symmetries. The six-dimensional

description of the theory indicates that it is useful to package the ua and di together in

a single quadratic differential φ on the Riemann surface, which will allow us to describe

the Coulomb branch and Seiberg-Witten geometry of Tg,n in an S-duality covariant way.

The quadratic differential has double poles at the puncture of C, with coefficient equal to

the corresponding mass Casimir di. In a local sewing coordinate zr, φ should have a local

Laurent expansion

φ ∼ · · ·+ ur
dz2r
z2r

+ · · · (7.4)

The basic ingredients of Seiberg-Witten theory are the central charge functions ar,

and aDr on the Coulomb branch together with the prepotential F(a) relating them as

aDr = ∂arF(a). In order to define these objects we may first define the Seiberg-Witten

curve Σ by the equation

λ2 = φ . (7.5)

This equation defines a Riemann surface Σ in T ∗C, together with a canonical one-form

λ on Σ. The periods of λ along a canonical set of homology cycles on Σ give the central

charges (a, aD) of the IR theory.

We want to show that the Coulomb branch parameters ur represent the effect of

variations of the UV gauge couplings on the prepotential, as expressed by (7.2). To this

aim it is natural to consider an enlarged parameter space M which is the fibration of

the Coulomb branch over the space T of UV couplings of the theory. In our case we may

observe that the spaceM is naturally identified with the cotangent bundle T ∗T (C) over the
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Teichmüller space of C. Indeed, let us recall that there is a natural dual pairing between

quadratic differentials φ and the Beltrami-differentials µ that describe variations of the

complex structure of C, given by 〈φ, µ〉 =
∫

C φµ. This identifies the spaces of quadratic

differentials on C with the fibers of T ∗T (C), and it may be used introduce coordinates ur
on T ∗T (C) which are conjugate to a given set of coordinates τs on the Teichmüller space

in the sense that 〈φ, µ〉 = urτr.

Considering the prepotential F as a function on M, i.e. a function of both a and

τ , we may first observe that the periods aDk = ∂akF = aDk (a, τ) can be varied for fixed

a by varying τ . At least locally, we may therefore consider the collection of (ak, a
D
k ) as

coordinates on M. The first step in our proof of the relations (7.2) will be to observe

that these relations are equivalent to the statement that the canonical symplectic form on

M = T ∗T (C) can be rewritten in terms of the coordinates (ak, a
D
k ) as

∑

r

δur ∧ δτr =
∑

k

δak ∧ δaDk . (7.6)

Indeed, assuming that the change of variables from (ak, a
D
k ) to (ur, τr) is such that (7.6)

holds, we may locally consider the difference aDk δak − urδτr of one-forms on M which is

closed due to (7.6), therefore locally on M representable as δF(a, τ) with aDk = ∂akF and

ur = −∂τrF . The converse is proven by a straightforward calculation.

In order to prove relation (7.6), let us first note that the right hand side of this equation

can be written in terms of the Seiberg-Witten differential λ as 1
2

∫

Σ δλ ∧ δλ. This follows

easily from the Riemann bilinear identity. In the expression 1
2

∫

Σ δλ ∧ δλ we consider λ as

a family of closed one-forms on the same smooth manifold Σ, and define the variations δλ

in the integral that way. The ∧ in this expression indicates the wedge operation both on Σ

and M. Note that variations along the Coulomb branch give normalizable deformations of

the SW curve, i.e. δurλ define holomorphic differentials on Σ. Thus the integral 1
2

∫

Σ δλ∧δλ
is zero when the two variations are along the Coulomb branch, as it should be. On the

other hand, variations of the couplings τr give δλ with crucial (0, 1) components.

It follows that the equation (7.2) we want to prove becomes equivalent to

∑

r

δur ∧ δτr =
1

2

∫

Σ
δλ ∧ δλ . (7.7)

It remains to observe that this equation (7.7) has a strikingly simple proof: The (0, 1)

part of δλ only receives a contribution from the change of complex structure of C under

the variation δτ . If we parameterize a complex structure deformation of C by a Beltrami

differential µδτ , the holomorphic differential dz gets deformed into dz+µz
z̄dz̄δτ . The (0, 1)

part of δλ is therefore just µλ δτ , allowing us to calculate

1

2

∫

Σ
δλ ∧ δλ =

∫

Σ
δλ ∧ (µrλδτr) =

1

2

∫

C
δφ ∧ µrδτr =

1

2
δur ∧ δτr . (7.8)

A weak-coupling limit in gauge theory will correspond to a component of boundary

of the Teichmüller space represented by surfaces C which look like collections of three-

punctured spheres glued together by identifying annuli around their punctures. One may
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naturally use the gluing parameters introduced in this construction as coordinates for the

Teichmüller space near such a boundary component. The gluing parameters can be labelled

by a collection of closed curves γr, r = 1, . . . , 3g − 3 + n embedded into the annuli used in

the gluing construction, qr ≡ qγr . We may then assume that the Beltrami differential µr

describing a variation of qr is distributionally supported on the closed curve γr where it

defines a local vector field vr. The coordinate ur on the Coulomb branch conjugate to qr
is then given as

ur =

∫

C
µrφ =

∫

γ
vrφ . (7.9)

Recalling that each curve γr also parameterizes an SU(2) factor SU(2)r of the gauge group

in the Lagrangian formulation associated to the given boundary component of T (C), we

may finally identiy the geometrically defined Coulomb branch parameter ur with the order

parameter

ur = Tr(Φ2
r) , (7.10)

where Φr is the value of the scalar field from the vector multiplet associated to the SU(2)

factor SU(2)r at infinity. We thereby arrive at the relations

ur = −∂τrF , (7.11)

relating the order parameter ur defined in (7.10) to the derivative of the prepotential with

respect to the gauge coupling qr = e2πiτr , τr =
4πi
g2r

+ θr
2π .

Notice that the proof we have given for the relations (7.11) generalizes easily to higher

rank gauge theories. It also remains valid for the Argyres-Douglas theories we are interested

in, and the reformulation given in (7.8) will be useful for the explicit comparison between

our CFT results with the Seiberg-Witten theory of these theories.

7.3.3 Supersymmetric partition functions and expectation values

There is a variety of protected correlation functions in N = 2 four-dimensional gauge

theories which can be computed by localization techniques. They typically involve a careful

definition of the theory on some four-manifold, which preserves a supercharge which squares

to an isometry of the manifold. The partition function is reduced to an integral over some

zeromodes of one-loop determinants and contributions localized at the fixed points of the

isometry. On four-manifolds with boundary, the answer will be a function of the choice of

boundary conditions.

Although the modifications are generically implemented in a concrete Lagrangian de-

scription of the theory, it is believed that they are sufficiently canonical not to actually

depend on the choice of Lagrangian description. Thus one can hope that the partition

function on compact manifolds will be S-duality invariant. The partition function on man-

ifolds with boundary is more subtle, because different sets of boundary conditions will be

natural and computable in different S-duality frames. The existence of Janus domain walls

and duality walls, codimension one interfaces which can be used to compare boundary

conditions at different values of the couplings and different S-duality frames, can be used

to argue that the partition function on a manifold with boundary will live in some linear
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space which has a flat connection on the space of couplings, and different natural bases in

different weakly coupled regions of parameter space.

The original example of partition function on a manifold with boundary is Nekrasov’s

partition function on Ω-deformed flat space [21, 22]. The Ω deformation has two deforma-

tion parameters ǫ1 = bǫ and ǫ2 = b−1ǫ. The parameter ǫ is simply a scale. The partition

function is traditionally defined with Dirichlet boundary conditions for the gauge fields, so

it is a function of the vev of vectormultiplet scalars at infinity. For b = 1, the same partition

function is expected to arise for compactification on the upper hemisphere of a round S4

of radius ǫ−1 [26], with Dirichlet boundary conditions at the equator. A deformation S4
b

of the round sphere exists [17], which is related to the Ω-deformed flat space at general b.

The partition function on the full round S4, or the ellipsoid S4
b , are computed by Pestun’s

localization as an integral over the vectormultiplet zeromodes of the square modulus of

the instanton partition function. The holomorphic and anti-holomorphic halves arise from

localization at the North and South pole of the sphere.

For theories of class S, Nekrasov’s partition function conjecturally coincides with con-

formal blocks for W-algebras.3 The S4
b partition function combines holomorphic and anti-

holomorphic conformal blocks into modular-invariant correlation functions for the Toda

theory on C [32]. In particular, for A1 theories, one obtains Virasoro conformal blocks

and Liouville theory correlation functions at central charge 1 + 6Q2, Q = b + b−1. The

Dirichlet boundary conditions for a given Lagrangian definition of the theory correspond

to conformal blocks built by sewing along the corresponding pair of pants decomposition.

The instanton partition function is computed by a sum over instanton sectors which coin-

cide with the power series over sewing parameters for the conformal blocks. The tree-level

gauge theory action produces the leading power of the sewing parameters, and the one-

loop measure for the matter fields reproduces the specific integration measure which defines

Liouville theory correlation functions out of conformal blocks.

The identification of the parameters between Liouville theory and gauge theory is

straightforward. Most subtleties can be attributed to the relation between conventional

flat space and Ω-deformed flat space, or four-sphere. Basically, the quadratic differential

φ is identified with ǫ2T (z), where T (z) is the energy-momentum tensor. In particular, the

mass Casimirs di control the conformal dimensions of primary fields di = ǫ2∆i. In terms

of the eigenvalues mi of the SU(2) flavor mass matrix, we can write mi = ǫµi, in terms

of the Liouville momentum µi defined by ∆i = µi(Q − µi). The insertion of a Coulomb

branch order parameter ur at the origin (North pole of the sphere) can be traded for a

derivative with respect to the corresponding gauge coupling τr: ur → ǫ2∂τr . This is the

reason Matone-like relations [20] in A1 theories are promoted to Virasoro Ward identities.

On the other hand, the choice of conformal dimensions ∆k, or better Liouville

momenta αk such that ∆k = αk(Q − αk), in the intermediate sewing channels of the

conformal blocks is controlled by the vevs ai = ǫαi of vectormultiplets selected at infinity.

In supersymmetric configurations, the vevs are not “read” by the expectation value of

local operators. Rather, they can be related to the vev of fundamental Wilson line defects

3This was proven for linear quiver gauge theories [12].
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on a large circle. There are two possible locations for the circle, which give cos 2πbαi and

cos 2πb−1αi. Supersymmetric line defects in gauge theory are associated to the vevs of

Verlinde line operators in the two-dimensional CFT, defined by the insertion and transport

of degenerate fields in conformal blocks. Boundary conditions in gauge theory which fix

the vev of a line defect can thus be matched with conformal blocks which are eigenvectors

of the corresponding Verlinde line defect.

7.4 Collision limits in A1 theories

We are now ready to go beyond the regular A1 theories, to irregular A1 theories. Mathe-

matical aspects of this problem have been analyzed before in [19].

7.4.1 Irregular punctures of rank 1

Consider a Lagrangian description associated to a pants decomposition where two punc-

tures share a pair of pants. This means that the corresponding block of eight complex

scalar fields is coupled to the gauge theory as two fundamental hypermultiplets to the

SU(2) gauge group represented by the tube which attach to the three-punctured sphere.

The two fundamental hypermultiplets have an SO(4) flavor symmetry, which is just the

combination of the two SU(2)± flavor symmetries associated to the two punctures. It is

useful to rewrite the mass parameters m± at the punctures in terms of the masses of each

of the two doublets of hypermultiplets: m± = m1 ±m2.

The simplest way to get an asymptotically free theory is to remove one of the two

doublets, by sending the corresponding mass parameter m2 to infinity. A little bit of care

is needed in order to keep a finite renormalized gauge coupling below the m2 energy scale.

By dimensional transmutation, the gauge coupling of the resulting asymptotically free

theory is described by a scale Λ = qm2 which we want to keep fixed in the limit m2 → ∞.

Here q is the usual instanton factor. In the 2d description, we can have the two punctures

at positions z = 0 and z = q in a local coordinate system on the Riemann surface. We will

relabel m1 → m/2.

The quadratic differential locally behaves as

φ =
m2

−
z2

+
c−
z

+
m2

+

(z − q)2
+

c+
z − q

+ · · · (7.12)

It is interesting to see the dimensional transmutation happen in the SW curve. Suppose

we want to send q → 0, but keep the IR physics non-singular. That means that we do

not want to make the SW curve singular. The geometry of the SW curve is controlled by

the zeroes of φ, which are the branch points of the double cover Σ → Cg,n. The simplest

thing to do is to keep the zeroes of φ away from the region where we are colliding the two

singularities. In particular, φ should have a well-defined square root in the region around

the two singularities.

If we write

φ =

(

m−
z

+
m+

z − q

)2

+
u

z(z − q)
+

c

z
+ · · · =

(

qm2 +mz

z(z − q)

)2

+
u

z(z − q)
+

c

z
+ · · · (7.13)
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then we can readily take the limit m2 → ∞, qm2 = Λ finite to

φ =

(

Λ

z2
+

m

z

)2

+
u

z2
+

c

z
+ · · · = Λ2

z4
+

2mΛ

z3
+

m2 + u

z2
+

ũ

z
+ · · · (7.14)

The first form is useful to read off the behavior of the SW differential

λ = ±
(

Λ

z2
+

m

z
+ · · ·

)

dz (7.15)

This verifies that m is still a mass parameter, and Λ a non-normalizable deformation.

Of course, we recognize the basic collision limit of two regular punctures in a Virasoro

conformal block. Repeating it in the gauge theory context we have learned the physical

meaning of the various ingredients. Notice that in the limit we kept u, ũ finite. This

specified the region of the Coulomb branch of the original theory which has a good limit as

q → 0. We can sharpen our understanding of the Coulomb branch operators if we expand

λ further:

λ = ±
(

Λ

z2
+

m

z
+ v + · · ·

)

dz (7.16)

A straightforward calculation of da∧ daD shows that the normalizable parameter v is dual

to the gauge coupling Λ, i.e. it can be added to the prepotential to shift Λ. Thus, expanding

out φ = λ2, we find that

u = 2Λv , (7.17)

which shows that u can be added to the prepotential to rescale Λ (i.e. shift the bare UV

gauge coupling, as it should), i.e.

u ∼ Λ∂ΛF . (7.18)

On the other hands, ũ can be added to the prepotential to shift the location of the puncture.

In an Ω background, Λ is mapped to c1, m to α′, and the relation between u, ũ and

derivatives of the prepotential is the semiclassical limit of the Virasoro Ward identities we

derived for a rank 1 irregular vector!

Let’s summarize our conclusions about the construction of “rank 1” irregular punctures

where φ has a pole of degree 4. We started from a Riemann surface Cg,n with two close

regular punctures p±, and represented them as a trinion glued to a single puncture p a

Riemann surface Cg,n−1 by a long thin tube of sewing parameter q, i.e. an SU(2) gauge

group weakly coupled to a block of hypermultiplets and to the SU(2) flavor symmetry at

p. The decoupling limit removes half of the hypers, and leaves us with the gauge theory

description of the irregular puncture: an asymptotically free SU(2) gauge theory coupled

to the SU(2) flavor symmetry of the regular puncture at p and to a single doublet of mass

parameter m. This can be taken to be the definition of the irregular puncture in the six-

dimensional A1 theory. The mass parameter m is associated to the SO(2) flavor symmetry

acting on the lone doublet.

It is interesting to look more closely to the parameter space of the theory. Locally, it is

parameterized by the remaining sewing parameters qr together with Λ. But the definition

of Λ depends on the choice of local coordinate at the irregular puncture. A change in the
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local coordinate definition will rescale Λ. If we pick a different pair of pants decomposition

of C, i.e. we do some S-duality at the gauge groups which still have exactly marginal

couplings, we will naturally change the choice of local coordinate at the irregular puncture,

and thus rescale Λ by some function of the couplings. This simply corresponds to a relative

finite renormalization of the bare UV gauge coupling in the two Lagrangian descriptions of

the theory. The main consequence for us is that Λ lives in a line bundle over the complex

structure moduli space of C, and the parameter space of the theory is the total space of that

bundle. This should be identified with the moduli space of complex structure parameters

of an irregular conformal block with a rank 1 puncture.

We should ask what are the boundaries of this new parameter space. In the regular

case, all the boundaries of parameter space corresponded to weakly coupled UV-complete

Lagrangian descriptions of the theory. The story is more intricate in the irregular case.

A simple boundary of parameter space is Λ → 0. This corresponds to making the theory

very weakly coupled, especially if we are looking at the Nekrasov partition function, or

sphere partition function, which have a natural IR cutoff. This boundary is akin to the

usual qi → 0 boundaries of parameter space.

But we can also ask what happens to the theory if we send Λ → ∞. Let’s pick some

Lagrangian description of the theory. We have the asymptotically free SU(2) gauge group,

coupled to the lone doublet of mass m and to another block of hypermultiplets, which

carries two more, possibly gauged, flavor symmetries SU(2)1 and SU(2)2. This SU(2)

Nf = 3 theory has an SO(6) flavor symmetry, inside which the SO(2)×SU(2)1×SU(2)2 sit

as a block diagonal SO(2)× SO(4). At strong coupling Λ, the theory looks like an Abelian

gauge theory, with BPS particles formed as bound states of a dyonic particle with no flavor

symmetry, and a quartet of monopoles in a spinor representation of SO(6). Under the

SO(2)× SU(2)1 × SU(2)2 subgroup of flavor symmetry, the monopoles split into a doublet

of SU(2)1, of positive SO(2) charge, and a doublet of SU(2)2 of negative SO(2) charge. In

most of the Coulomb branch, all BPS particles are massive, but there is a region where the

monopoles are light, and all other particles have masses which scale with Λ. In an electric-

magnetic duality frame where the monopoles are electrically charged, the only light degrees

of freedom are the two doublets of monopoles, and a photon under which the monopoles

have charge 1.

If the SU(2)1 and/or SU(2)2 groups are gauged, at scales smaller than Λ they will be

coupled not to the original block of hypermultiplets, but only to the single light monopole

doublets. Thus we should renormalize their gauge couplings to new finite scales Λ1 = Λq1
and Λ2 = Λq2. Thus the description of the theory, in the limit of large Λ with finite Λ1 and

Λ2, is that of two separate A1 theories, each with a rank 1 irregular singularity, coupled

by a U(1) gauge fields which gauges the diagonal combination of the two SO(2) flavor

symmetries at the irregular singularities. This is not a fully UV complete description of

the theory, but it is a possible tool to study the large Λ behavior. In particular, we may hope

to be able to express the partition function of the theory in a form adapted to this limit,

possibly as an expansion in inverse powers of Λ, representing a tower of non-renormalizable

effective corrections to the Abelian gauge theory Lagrangian.
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The basis of conformal blocks (3.12) which we have built, where a regular puncture

(possibly part of a larger conformal block) together with a rank 1 irregular puncture are

realized in a rank 1 irregular module is precisely adapted to this limit. The effective

U(1) gauge field which is weakly coupled in this description should be identified with the

momentum β′ in the intermediate rank 1 irregular channel. The asymptotic power series

expansion in z/c1 for (3.12) should be matched to the expected asymptotic expansion in

inverse powers of Λ.

The existence of such conformal blocks is presumably related to the existence of bound-

ary conditions and line defects which have a simple behavior in the Λ → ∞ limit, and tend

to Dirichlet boundary conditions and Wilson loops in the effective Abelian description we

gave. Basic line defects in regular A1 theories are labelled by closed, non-self-intersecting

paths on C. Under the collision limit which gives rise to a rank 1 irregular singularity, line

defects labelled by curves which are not pinched between the colliding punctures have a fi-

nite limit. They have no monopole charge under the asymptotically free gauge group. Line

defects labelled by curves which are pinched between the colliding punctures require some

renormalization in the limit, and give rise to line defects with ’t Hooft charge under the

asymptotically free gauge group. They are labelled by “laminations”, collections of curves

which can end in specific ways at the irregular puncture. The basic ’t Hooft monopole

operator for the asymptotically free gauge group, in a given Lagrangian description of the

theory, is labelled by a curve which starts at the irregular puncture, goes around the trinion

and comes back to the irregular puncture. It arises from the collision limit of the basic ’t

Hooft loop for the same gauge group.

It is easy to argue, say by looking at the vev of line defects on circle compactifications

of the theory, that the basic ’t Hooft loop has a finite vev in the above-defined Λ → ∞
limit, and becomes a Wilson loop for the Abelian gauge field. We can use this intuition to

sketch how one could produce a boundary condition for the theory with a rank 1 irregular

singularity, which would go in the Λ → ∞ to a Dirichlet boundary condition for the

Abelian gauge field. We can start from a boundary condition in the regular A1 theory

which fixes the vev of the ’t Hooft loop: this is just the S-duality image of a standard

Dirichlet boundary condition. Then we can carry the boundary condition through the

collision limit, and tentatively define a boundary condition which fixes the vev of the basic

’t Hooft loop in the asymptotically free theory.

Notice that although Λ → e2πiΛ is a symmetry of the theory, it is not a symmetry of

the ’t Hooft loop, which by Witten’s effect is mapped to a ’t Hooft-Wilson loop of electric

charge n by Λ → e2πinΛ. Thus, it is not a symmetry of the boundary condition adapted

to the Λ → ∞ limit. This is the first piece of evidence of the fact that some sort of Stokes

phenomenon happens in the Λ → ∞ limit: the analytic continuation in Λ and the Λ → ∞
limit do not commute. Later, this will suggest that the expansion in inverse powers of Λ

of correlation functions is really an asymptotic series, which approximates well the correct

answer in a given Stokes sector around Λ → ∞.
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7.4.2 Irregular puncture of rank 1/2

We can readily decouple the remaining doublet, if we send m → ∞ but leave the new gauge

coupling scale Λ̃2 = 2mΛ finite in the limit. We get a behavior

φ =
Λ̃2

z3
+

u

z2
+

c

z
+ · · · (7.19)

and

λ = ±
(

Λ̃

z
3
2

+ · · ·
)

dz (7.20)

Hence the irregular puncture where φ has a pole of degree 3 can be defined in the A1

theory by coupling an asymptotically free four-dimensional SU(2) gauge group to the flavor

symmetry of a regular puncture. We denote such a puncture as a “rank 1/2” irregular

puncture. We have not studied this puncture in the conformal field theory analysis.

7.4.3 Irregular puncture of rank 2

Now, we are ready for more interesting limits. For example, suppose we want to collide

one more regular puncture with the irregular puncture where φ has a degree four pole. We

can write again

φ =

(

Λ

z2
+

m

z
+

m′

z − q

)2

+
u′

z2(z − q)
+

u

z2
+

ũ

z
+ · · · (7.21)

in order to keep the zeroes of φ away from the collision region. Then we can renormalize

the three parameters Λ,m, m′ as q → 0

m+m′ = m̃ Λ +m′q = Λ1 m′q2 = Λ2 (7.22)

in order to get a finite limit

φ =

(

Λ2

z3
+

Λ1

z2
+

m̃

z

)2

+
ũ

z3
+

u

z2
+

c

z
+ · · · (7.23)

Again, we picked a form of the answer which makes manifest the behavior of the SW

differential

λ = ±
(

Λ2

z3
+

Λ1

z2
+

m̃

z
· · ·
)

dz (7.24)

Clearly, this is the field theory version of the collision limit to a rank 2 irregular singularity.

The physical meaning of this limiting procedure is actually rather transparent: we sent

some mass parameters to infinity, removing degrees of freedom, but we kept the periods

of λ, which encode the low energy Lagrangian, all finite. In particular, the dimension of

the Coulomb branch did not change. In order to explore the physics further, we can cut

the tube which connects this new “irregular puncture” to the rest of the Riemann surface,

i.e. turn off the gauge couplings of the SU(2) gauge group whose order parameter is u, and

whose gauge coupling controls the sewing parameter which glues the pair of punctures to

the rest of the surface.
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Notice that a shift of that gauge coupling corresponds to a rescaling of the z coordinate.

It is easy to see that Λ
1/2
2 is playing the tole of the renormalized gauge coupling of the

SU(2) gauge group, which is now asymptotically free, with a peculiar beta function, which

would naively correspond to a coupling to three and a half hypermultiplet doublets. If

we turn off the gauge coupling, we are left with an irreducible theory, described by the

quadratic differential

φ =

(

1

z3
+

Λ1

z2
+

m̃

z

)2

+
ũ

z3
+

m2 − m̃2

z2
(7.25)

We replaced the u order parameter by the mass parameter m2 of the now ungauged SU(2)

flavor symmetry, which controls the residue of λ at infinity . The limiting procedure we

followed is well-known for this irreducible theory: we went from SU(2) Nf = 3 to an

Argyres-Douglas theory with an SU(3) flavor symmetry, by giving all three doublet flavors

the same large mass, but adjusting the Coulomb branch parameters and gauge coupling to

keep them light, and have simultaneously a light monopole. In the current context, we will

only consider an SU(2) × U(1) subgroup of that SU(3) flavor symmetry. The full theory

corresponding to the Riemann surface with such an irregular singularity can be described

by gauging the diagonal combination of that SU(2) flavor group and the flavor group of a

regular singularity. The AD theory appears to contribute to the beta function of the SU(2)

theory as one and a half doublet of free fields.

The Argyres Dougles theory has a Coulomb branch parameter, and a coupling. Gaug-

ing the SU(2) flavor symmetry adds a new Coulomb branch parameter, and a new coupling.

If we expand λ further,

λ = ±
(

Λ2

z3
+

Λ1

z2
+

m̃

z
+ v1 + v2z + · · ·

)

dz (7.26)

it is easy to see that Λ2 can be shifted by adding v2 to the prepotential, and the same is

true for Λ1 and v1. In this parameterization, φ becomes

φ =
Λ2
2

z6
+

2Λ2Λ1

z5
+

2Λ2m̃+ Λ2
1

z4
+

2Λ2v1 + 2Λ1m

z3
+

2Λ2v2 + 2Λ1v1 +m2

z2
+

ũ

z
+ · · · (7.27)

and we see that adding u′ to the prepotential shifts Λ1 by a multiple of Λ2, while adding

u rescales both Λ2 and Λ1. Finally, ũ shifts the location of z. These are the semiclassical

limits of the Virasoro Ward identities.

Now we have an interesting parameter space which is parameterized locally by

(Λ2,Λ1, qr), and it is a bundle over the space of complex structure deformations of the

Riemann surface. We should ask about possible limits in this parameter space. We can

surely consider a degeneration limit where the gauge coupling which couples the AD theory

to the rest of the theory is turned off. But this limit does not probe the AD theory at

all, it simply decouples it from the rest of the A1 theory. There is a more subtle limit:

Λ2 → 0 for finite Λ1. This limit replaces the rank 2 puncture in φ with a rank 1 puncture.

What is the physics of this limit? At low energies, for Λ1 ≫ Λ2, the AD theory is roughly

the theory of an SU(3) triplet of monopoles and of a singlet dyonic particle. In a generic
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region of the Coulomb branch, both sets of particles are massive, but we can look at the

region where the monopoles are light. Thus the Λ2 → 0 physics is somewhat familiar: a

light SU(2) doublet of monopoles of unit flavor U(1) charge, another monopole of charge

−2 under the U(1) flavor symmetry, all charged under an Abelian gauge field. If the AD

theory is part of a larger A1 theory, the SU(2) gauge theory coupled to the doublet of

monopoles will have a renormalized coupling Λ = qΛ2, and represent the residual rank 1

irregular singularity.

Of course, the conformal blocks which are adapted to this limit are exactly the ones

where the rank 2 puncture is built our of descendants of a rank 1 puncture, whose Liouville

momentum corresponds to the Coulomb branch parameter of the U(1) gauge field. A key

observation is that this Abelian description at small Λ2 arises from the collision limit of

a regular puncture and rank 1 puncture in the Abelian description we gave for the rank

1 irregular singularity. Conjecturally, the line defects of the irregular A1 theories are still

labelled by appropriate laminations. It is not difficult to identify laminations which become

Abelian Wilson loops in the Abelian Λ2 → 0 limit. We will come back to this point in

future work

7.4.4 Irregular puncture of other rank

We can also reduce the degree of the pole of φ from 6 to 5 (rank 3/2 irregular puncture) if

we turn Λ2 off, but keep Λ2Λ1 fixed, to get

φ =

(

Λ 3
2

z
5
2

+
Λ 1

2

z
3
2

)2

+
ũ

z3
+

u

z2
+

c

z
+ · · · (7.28)

This can be understood as the AD theory which arises from SU(2) Nf = 2, and has a

SU(2) flavor symmetry.

It is clear that we can repeat this exercise further, and derive theories associated to

Riemann surfaces with punctures where φ has poles of even degree 2d+ 2

φ =

(

Λd

zd+1
+ · · ·+ m

z

)2

+
ud−1

zd+1
+ · · ·+ cũ

z
+ · · · (7.29)

or odd degree 2d+ 1

φ =

(

Λd− 1
2

zd+
1
2

+ · · ·+
Λ 1

2

z
3
2

)2

+
ud−1

zd+1
+ · · ·+ c

z
+ · · · (7.30)

If we look at the generalized AD theories which describe the physics when the UV

gauge couplings are turned off, say for even degree

φ =

(

1

zd+1
+

Λd−1

zd
+ · · ·+ m

z

)2

+
ud−1

zd+1
+ · · ·+ m̃2 −m2

z2
(7.31)

we can give a straightforward interpretations of the various parameters. The scaling di-

mension of φdz2 is [φ] = 2, and hence [z] = − 1
d . The Coulomb branch parameters ui

have dimension [ui] = 2 − i
d , and are vevs of operators ûi with the same dimension. The
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non-normalizable parameters Λi have scaling dimension [Λi] = 1− i
d . Roughly, we should

be able to do a change δΛi by adding a prepotential deformation δΛiud−i, but a more

precise statement should map each ui to a vector field acting on the space of Λj . The

2d dictionary suggests immediately the details of the map: we can extract ui from φ by

contracting with the vector field vi = zi+1 d
dz and integrating on a small loop around the

irregular puncture. This Beltrami differential correspond to a specific redefinition of the

local coordinate z → z + ǫiz
i+1, which gives δΛj−i = −(j + 1)ǫiΛj . Hence we expect that

the Coulomb branch order parameter ûi changes the couplings Λi according to the vector

field

ℓi = −
∑

(j − i)Λj
∂

∂Λj−i
(7.32)

This expression is also valid in the general case where the irregular singularity sits in a full

Riemann surface. In that case we also have the operator û0, which is the Coulomb branch

order parameter for the SU(2) gauge group which is coupled to the AD theory, and maps

to a simple rescaling of the local coordinate z, and hence of the Λi. The Coulomb branch

parameter ũ maps to a translation of the local coordinate, and maps to a Beltrami differ-

ential which moves the puncture. Finally, the parameter m is simply the mass parameter

of a U(1) flavor symmetry.

The correspondence between the parameters ui and the variations of the couplings can

be expressed in a suggestive fashion if we expand further

λ =
Λd

zd+1
+ · · ·+ m

z
+ v1 + v2z + · · ·+ vdz

d + · · · (7.33)

Then

da ∧ daD =
2

πi

∑

k

1

k
dvk ∧ dΛk (7.34)

and hence vk can be added to the prepotential to shift Λk.

Though this formula follows from our general analysis of the relation between Coulomb

branch order parameters and Beltrami differentials, it is entertaining to re-derive it in a

slightly different manner. If we want to compute the variation of the periods as we vary

the Λk parameters in λ, in terms of a normalizable δλ, we need to correct the naive δλ in

a region near the origin.

Near the origin, we can find a primitive w(z) such that λ = dw. We can regularize λ

to λ̃ = d(fw), where f is a smooth function which goes to zero exponentially fast at the

origin, and goes to 1 away from the origin. Then the (0, 1) part of δλ is δw∂̄f . Notice that

δw is single-valued, as m is not varied!

Thus the canonical symplectic form becomes

da ∧ daD =

∫

Σ
δλ ∧ δw∂̄f = 2

∮

|z|=ǫ
δλδw (7.35)

which coincides with 7.34 We thus recovered the semiclassical limit of the Virasoro Ward

identities for a general irregular vector.

For odd degree, everything works in the same way, except that there is no U(1) flavor

symmetry, and the Λ parameters have half-integral grading.
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7.5 Gauge theory conclusions

Now we are ready to compare the physical properties of the AD2 theory with the final form

of the irregular correlation function Φ(2)(c1, c2;α0, α). In the Λ2 → 0 limit, we expect to

see an Abelian gauge theory coupled to a triplet of hypermultiplets

Indeed, we recognize three Υ functions in the denominator of the structure constant.

They correspond to the one-loop determinants on S4 of three hypers of gauge charge 1.

We see that two hypers sit in a doublet of SU(2) flavor symmetry with mass α0, and the

third hyper has charge under the U(1) flavor symmetry of mass α, as expected from the

gauge theory analysis.

The conformal blocks have a “tree level” prefactor which should be identified with the

exponent of the prepotential of the Abelian gauge theory. The magnetic period dual to β

can be computed by taking the first β derivative of the prepotential, and is controlled by

the constant
c21
c2

term. This controls the mass of the heavy magnetic particles in the AD2

theory. Thus we interpret the power series in c2
c21

as an expansion in inverse powers of the

mass of the heavy particles, which have apparently been integrated out.

We expect that the physical interpretation of correlation functions written in a general

basis of irregular conformal blocks will follow the same general pattern. Standard regular

internal legs of the conformal block will correspond to weakly coupled UV non-Abelian

gauge groups. Internal legs corresponding to irregular intermediate channels will map to

Abelian gauge groups, emerging in an effective weakly coupled description valid in the

appropriate corner of the space of couplings of the theory. The structure constants will

keep track of the contribution of light matter hypermultiplets. The expansion of conformal

blocks in power series will keep track systematically of instanton contributions for the

non-Abelian gauge groups, and of the effect of integrating out heavy magnetically charged

particles for the effective Abelian gauge groups. It is reasonable to expect that the effective

expansion in inverse powers of the masses of magnetic particles should be only asymptotic,

while the instant on expansion should have a finite radius of convergence. This expectation

seems to be supported by the conformal field theory calculation.

8 Discussion and future directions

In this paper we have initiated the study of Virasoro conformal blocks and Liouville theory

correlation functions in the presence of irregular singularities. Regular BPZ conformal

blocks are usually defined through the sewing construction, which provides a convergent

power series expansion around the corners of the complex structure moduli space where

the Riemann surface degenerates. Irregular conformal blocks are functions of an enlarged

complex structure moduli space, which cannot be parameterized fully by the usual sewing

construction, and has a more intricate boundary structure.

Ultimately, we would like to find a straightforward, fully computable, definition of

several bases of irregular conformal blocks, each adapted to a different degeneration limit

in the enlarged complex structure moduli space, and equipped with explicit generalization

of braiding and fusion integral kernels relating these bases. Each basis should also be
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equipped with an integration measure to package the holomorphic and anti-holomorphic

conformal blocks into a Liouville theory correlation function, invariant under generalized

fusion and braiding transformations.

In this paper we completed some basic steps towards that goal. First, we extended

the familiar notion of OPE expansion, which replaces some punctures on the Riemann

surface with a sum over descendants of a regular puncture, by considering formal sums

over descendants of an irregular puncture. In the regular case, the OPE is an equivalent

reformulation of the sewing procedure, and gives convergent power series expansions. In

the irregular case, the sums over descendants of an irregular puncture are sufficiently ver-

satile to cover all interesting corners of the extended complex structure moduli space, but

appear to be formal power series only, possibly asymptotic. A crucial feature of such ex-

pansions in descendants of irregular vectors is that they commute with fusion and braiding

transformations done on the rest of the Riemann surface.

Experimentally, this type of expansion appears to exits and be unique at all orders

which we could test. We also devise a collision limit of regular conformal blocks which

can give a solution to our ansatz at all orders of the expansion, order by order in the

formal power series. Based on our analysis of the free field representation in section 4,

we conjectured that irregular conformal blocks have Stokes phenomena in the extended

complex structure moduli space, and that the true bases of irregular conformal blocks could

be characterized uniquely by their asymptotic expansion in appropriate Stokes sectors.

We expect that Verlinde-like line defects will be important in characterizing the prop-

erties of irregular conformal blocks. As a preparation to define them, we provide an al-

ternative characterization of our bases of conformal blocks: they are uniquely specified by

requiring the existence of certain series expansions for conformal blocks with a degenerate

puncture. The series expansion is tailored to be well-behaved under transport of degener-

ate fields across the irregular conformal block, and seems to arise from the careful collision

limit of regular conformal blocks with degenerate insertions. Indeed, in this formalism we

can actually prove that such collision limits make sense, and produce well-defined formal

power series.

The last step we take in this paper is to use the collision limit to predict the integration

measure which gives Liouville correlation functions from conformal blocks with irregular

singularities. In a future publication, we plan to use such collision limits to derive the

generalized fusion and braiding transformations, transport of degenerate insertions and

Verlinde line defects for irregular conformal blocks. We expect the resulting integral ker-

nels to provide a more intrinsic definition of our bases of irregular conformal blocks: a

general strategy is to define the conformal blocks through a Riemann-Hilbert problem in

the extended complex structure moduli space, specifying the fusion and braiding transfor-

mations which relate bases of conformal blocks adapted to the possible degeneration limits

of the Riemann surface.

– 49 –



J
H
E
P
1
2
(
2
0
1
2
)
0
5
0

A Conventions

We will write the mode expansion of the chiral free field on the cylinder as

φ̃(x) = q + px+
∑

k 6=0

i

n
ane

−inx , (A.1)

where

[q, p] =
i

2
[an, am] =

n

2
δn,−m . (A.2)

The corresponding expansion of the chiral free field on the plane is obtained via

φ(z) = φ̃(w(z))− Q

2
log

∂z

∂w
,

and it takes the form

φ(z) = q − α log z +
∑

k 6=0

i

n
anz

−n , α := ip+
Q

2
. (A.3)

If an|c〉 = −icn|c〉, this implies

∂φ(z) ∼ −
n
∑

k=1

ck
zk+1

− α

z
+ . . . (A.4)

in the vicinity of an irregular singularity of order n.

B Irregular chiral vertex operators

This appendix describes the evidence that is available for the existence of the intertwining

operators between irregular modules from section 3 from the purely algebraic point of view.

B.1 The standard constructions revisited

In this section we will review some standard facts, recast in a way which is suitable to

generalization.

B.1.1 The chiral vertex operator

It is useful some review the properties of the chiral vertex operator, in a way which high-

lights the parallelism with the irregular case, and sets up the problem for collision limits.

Consider first the image under Ψ∆z

∆f ,∆i
(z) of the highest weight vector in the module V∆i

|R(1)(z) 〉 = Ψ∆z

∆f ,∆i
(z)|∆i 〉 . (B.1)

This is a vector in V∆f
defined by the action of raising Virasoro operators:

Lk|R(1)(z) 〉 = zk (z∂z +∆z(k + 1)) |R(1)(z) 〉 k > 0 ,

L0|R(1)(z) 〉 = (z∂z +∆z +∆i) |R(1)(z) 〉 . (B.2)
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The vector |R(1)(z) 〉 can be built as a unique power series in z in terms of descendants

of the highest weight vector |∆f 〉:

|R(1)(z) 〉 = z∆f−∆i−∆z

∞
∑

k=0

zk |∆f ; k 〉 . (B.3)

The Ward identities take a recursive form on the coefficients of the expansion

L0|∆f ; k 〉 = (∆f + k) |∆f ; k 〉
Ln|∆f ; k 〉 = (∆f −∆i + n∆z + k − n) |∆f ; k − n 〉 n > 0 , (B.4)

so that one can set |∆f ; 0 〉 = |∆f 〉 and in principle solve the recursion order-by-order

in k.

Of course, for the standard chiral vertex operator, we can solve the Ward identities

directly. We write

|∆f ; k 〉 =
∑

I;|I|=k

CI L−I |∆ 〉 (B.5)

with L−I being a monomial in Virasoro generators, |I| being the L0-weight of L−I . The

coefficients CI can be computed right away

CI =
∑

I′

M−1
II′ (∆f ) 〈∆f |LI′ |R(1)(z) 〉 , (B.6)

where M−1
II′ (∆f ) are defined by

MII′(∆f ) := 〈∆f |LIL−I′ |∆f 〉 , and
∑

I′

MII′(∆f )M
−1
I′I′′(∆f ) = δII′′ .

and 〈∆f |LI′ |R(1)(z) 〉 is computed from

〈∆f |R(1)(z) 〉 = z∆f−∆i−∆z (B.7)

simply by applying the Ward identities.

Starting from |R(1)(z) 〉, we can define the action of the chiral vertex operator

Ψ∆
∆f ,∆i

(z) over descendants of the highest weight vector |∆i 〉 recursively by

Ψ∆z

∆f ,∆i
(z)Lk| v 〉 =

(

Lk − zk (z∂z +∆z(k + 1))
)

Ψ∆z

∆f ,∆i
(z)| v 〉 k < 0 , (B.8)

For the standard chiral vertex operator we can solve this recursion directly, by computing

〈∆f |LI′Ψ
∆
∆f ,∆i

(z)|∆i 〉 via Ward identities and acting with M−1
II′ (∆f ).

B.1.2 The rank 1 irregular vector

The rank 1 irregular vector is a vector in V∆f
defined by the action of raising Virasoro

operators:

L0| I(1)(c1) 〉 = (∆α′ + c1∂c1) | I(1)(c1) 〉
L1| I(1)(c1) 〉 = −2c1(α

′ −Q)| I(1)(c1) 〉
L2| I(1)(c1) 〉 = −c21| I(1)(c1) 〉
Ln| I(1)(c1) 〉 = 0 n > 2 (B.9)
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The vector | I(1)(c1) 〉 can be built as a unique power series in c1 in terms of descendants

of the highest weight vector |∆f 〉:

| I(1)(z) 〉 = c
∆f−∆α′

1

∞
∑

k=0

ck1 |∆f ; k 〉 , (B.10)

We can find the |∆f ; k 〉 in three ways: solving a recursion relation, by direct calculation,

or by collision limit on |R(1)(z) 〉.
Plugging the series ansatz into the Ward identities, we get the recursive definition

L0|∆f ; k 〉 = (∆f + k) |∆f ; k 〉
L1|∆f ; k 〉 = −2(α′ −Q)|∆f ; k − 1 〉
L2|∆f ; k 〉 = −|∆f ; k − 2 〉
Ln|∆f ; k 〉 = 0 n > 2 (B.11)

which can be solved order-by-order starting from |∆f ; 0 〉 = |∆f 〉
The solution can also be derived by computing directly 〈∆f |LI′ | I(1)(c1) 〉 via the

Ward identities and acting with M−1
II′ (∆f ).

From this point of view, the collision limit from |R(1)(z) 〉 to | I(1)(c1) 〉 with constant

c1 = αzz and α′ = αi + αz is obvious: the Ward identities for |R(1)(c1) 〉 go to the Ward

identities for | I(1)(c1) 〉 in the collision limit, so obviously

〈∆f |LI′ |R(1)(z) 〉 → 〈∆f |LI′ | I(1)(c1) 〉 (B.12)

as long as

〈∆f |R(1)(z) 〉 → 〈∆f | I(1)(c1) 〉 (B.13)

In the simple (BPZ) normalization, a rescaling is needed for this to be true. We

already know that we should strip off a divergent power of z. But we also need to multiply

|R(1)(z) 〉 by α
∆f−∆α′

z to convert z∆f−∆α′ → c
∆f−∆α′

1 . Thus we need to take the limit of

z2αzαiα
∆f−∆α′

z |R(1)(z) 〉 (B.14)

with constant c1 = αzz and α′ = αi + αz.

Finally, it is useful to understand the collision limit from the point of view of the

recursion relation. The coefficient of |∆f ; k − 1 〉 in the recursion B.4 grows linearly with

αz, all the others grow quadratically. This means that |∆f ; k 〉 grows at most as αk
z , and

the coefficient of αk
z satisfies the recursion relations B.11.

In the following, we will expand various objects as sums of descendants of | I(1)(c1) 〉,
defined as the vectors of the form

L−I∂
k
c1 | I(1)(c1) 〉 (B.15)

Crucially for us, action of a lowering Virasoro generator on a descendant of | I(1)(c1) 〉 can
be rewritten as a sum over descendants in a straightforward way: one can commute the
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Virasoro generator through L−I in the usual way, act on | I(1)(c1) 〉 via the Ward identities,

and then bring to the left any factors of c1, passing them through ∂k
c1 in the obvious way.

If we define the “weight” of the descendant B.15 as |I| + k, the following is true:

acting with Ln on a weight k descendant gives a sum over descendants of weight t in

the range k − n ≤ t ≤ k − n + 2, multiplied by a power ct−k+n
1 , with coefficients which

are polynomials in α′. Thus the “rank 1 irregular module I1” defined as the space of

descendants of | I(1)(c1) 〉 carries an interesting action of the Virasoro algebra.

We can give simple examples Ward identities for of weight 1 descendants.

(L0 −∆α′ − c1∂c1) ∂c1 | I1 〉 = ∂c1 | I1 〉
(

L1 + 2c1(α
′ −Q)

)

∂c1 | I1 〉 = −2(α′ −Q)| I1 〉
(

L2 + c21
)

∂c1 | I1 〉 = −2c1| I1 〉
Ln∂c1 | I1 〉 = 0 n > 2 (B.16)

and

(L0 −∆α′ − c1∂c1)L−1| I1 〉 = L−1| I1 〉
(

L1 + 2c1(α
′ −Q)

)

L−1| I1 〉 = 2 (∆α′ + c1∂c1) | I1 〉
(

L2 + c21
)

L−1| I1 〉 = −6c1(α
′ −Q)| I1 〉

L3L−1| I1 〉 = −4c21| I1 〉
LnL−1| I1 〉 = 0 n > 3 (B.17)

By definition, every descendant of | I(1)(c1) 〉 can be evaluated as a vector in the stan-

dard Verma module V∆f
. But it is important that the Virasoro action on I1 does not make

any reference to ∆f . We will denote this evaluation map I1 → V∆f
as Ψr,1

∆f ,α′(c1).

B.1.3 Direct construction of series expansions for regular vectors

It may be useful to observe that the expansion (3.4) for the regular vectors |R(2)(z, β)〉
can be constructed in a way that is closely analogous to the procedure we will use for the

irregular vectors later in this section. To this aim we will think about the |R(1)
k (w) 〉 as

solutions of a recursion relation inside the space R1 of descendants of |R(1)(w) 〉. Indeed,

much as it happened for the action of Virasoro generators on descendants of | I(1)(c1) 〉, the
result of acting with Virasoro generators on a descendant of |R(1)(w) 〉 can be rewritten in

terms of descendants of |R(1)(w) 〉, with coefficients polynomial in w, with no reference on

the ambient module V∆0 .

For example, at weight 1 (defining the weight of descendants in R1 as we did for the

descendants in I1),

(L0 − w∂w −∆1 −∆β) ∂w|R(1)〉 = ∂w|R(1)〉
(

Ln − wn+1∂w −∆1(n+ 1)wn
)

∂w|R(1)〉 = (n+ 1)
(

wn∂w + n∆1w
n−1
)

|R(1)〉 (B.18)
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and

(L0 − w∂w −∆1 −∆β)L−1|R(1)〉 = L−1|R(1)〉
(

L1 − w2∂w − 2∆1w
)

L−1|R(1)〉 = 2 (w∂w +∆1 +∆β) |R(1)〉 (B.19)
(

Ln − wn+1∂w −∆1(n+ 1)wn
)

L−1|R(1)〉 = (n+ 1)
(

wn∂w + n∆1w
n−1
)

|R(1)〉
The recursion relations which follow from

L0|R(2)(w, z) 〉 = (z∂z +∆2 + w∂w +∆1 +∆3) |R(2)(w, z) 〉 (B.20)

Ln|R(2)(w, z) 〉 =
(

zn+1∂z +∆2(n+ 1)zn + wn+1∂w +∆1(n+ 1)wn
)

|R(2)(w, z) 〉
take the form

(L0 − w∂w −∆1 −∆β) |R(1)
k 〉 = k|R(1)

k 〉
(

Ln − wn+1∂w −∆1(n+ 1)wn
)

|R(1)
k 〉 = (∆β + n∆2 −∆3 + k − n)|R(1)

k−n〉 . (B.21)

As an example, consider k = 1. Then the recursion relation has a source only for n = 1.

We can easily solve

|R(1)
1 〉 = ∆β +∆2 −∆3

2∆β
(L−1 − ∂w) |R(1)〉 . (B.22)

It is straightforward to generalize this procedure to higher orders in the expansion.

B.2 Maps to rank 1

Now we are ready to describe how solutions of Ward identities can be expanded recursively

in descendants of a rank 1 irregular vector.

B.2.1 Rank 2 to rank 1

In order to define the image | I(2)(c, α′′) 〉 of a rank 2 irregular vector of parameters c2, c1, α
′′

under Ψ1,2(c2), we can start from the formal series ansatz

| I(2)(c, α′′) 〉 = cν22 cν11 e
(α′′−β′)

c21
c2

∞
∑

k=0

ck2 | I(1)2k (c1, β
′) 〉 , (B.23)

where the vectors | I(1)2k (c1, β
′) 〉 for k > 0 can be represented as generalized descendants of

the rank 1 irregular vector | I(1)0 (c1, β
′) 〉 of parameters c1, β

′. Assigning weight k to the

Virasoro generator L−k and weight 1 to both c−1
1 and ∂c1 , the vector | I(1)2k (c1, p) 〉 must be

a descendant of total weight 2k.

Let’s test this ansatz. We want

L0| I(2)(c, α′′) 〉 = (∆α′′ + c1∂c1 + 2c2∂c2) | I(2)(c, α′′) 〉
L1| I(2)(c, α′′) 〉 =

(

c2∂1 − 2c1(α
′′ −Q)

)

| I(2)(c, α′′) 〉
L2| I(2)(c, α′′) 〉 = −

(

c21 + c2(2α
′′ − 3Q)

)

| I(2)(c, α′′) 〉
L3| I(2)(c, α′′) 〉 = −2c2c1| I(2)(c, α′′) 〉
L4| I(2)(c, α′′) 〉 = −c22| I(2)(c, α′′) 〉
Ln| I(2)(c, α′′) 〉 = 0 n > 4 (B.24)
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If we insert the ansatz into the Ward identities, the prefactor e
(α′′−β′)

c21
c2 shifts α′′ → β′ in

the action of L1, and we should set ν1 + 2ν2 = ∆β′ −∆α′′ in order to shift α′′ → β′ in the

L0 equation.

Then the ansatz is consistent: the equations are satisfied by | I1 〉 = | I(1)(c1, β′) 〉 at

the leading order, and at higher orders we get

L0| I(1)2k (c1, β
′) 〉 =

(

∆β′ + 2k + c1∂c1
)

| I(1)2k (c1, β
′) 〉

(

L1 + 2c1(β
′ −Q)

)

| I(1)2k (c1, β
′) 〉 =

(

∂1 + ν1c
−1
1

)

| I(1)2k−2(c1, β
′) 〉

(

L2 + c21
)

| I(1)2k (c1, β
′) 〉 = −(2α′′ − 3Q)| I(1)2k−2(c1, β

′) 〉
L3| I(1)2k (c1, β

′) 〉 = −2c1| I(1)2k−2(c1, β
′) 〉

L4| I(1)2k (c1, β
′) 〉 = −| I(1)2k−4(c1, β

′) 〉
Ln| I(1)2k (c1, β

′) 〉 = 0 n > 4 (B.25)

Extensive experiments indicate that the solution to these recursion equations exists

for generic values of the parameters c1, c2, α
′′, β′, and is always unique. At the first stages

of the calculations, ν1 and ν2 are also fixed uniquely. The solution for | I(1)2k (c1, p) 〉 turns

out to be a a sum over descendants at level s, 0 ≤ s ≤ k, multiplied by a power cs−2k
1 . The

linear equations for the coefficients of the various descendants have a triangular form: no

non-trivial matrix inversion appears to be needed. Indeed, the coefficients of the expansion

are polynomials in α′′, β′. This contrasts with the usual chiral vertex operator, which

gives an expansion in rational functions of the Liouville momenta, with poles due to the

existence of null vectors for special values of ∆f .

As an example, set k = 1. We can reproduce the source in the L3 equation by

(2c1)
−1L−1| I1 〉. Then the source in the L2 equation by adding (2c1)

−1(2α′′ − 3β′)∂c1 | I1 〉
to that. Then the L1 equation is satisfied if we set

ν1 = 2(α′′ − β′)(Q− β′)

ν2 = (β′ − α′′)

(

3

2
Q− 3

2
β′ − 1

2
α′′
)

. (B.26)

Thus we will set

| I(1)2 (c1, β
′) 〉 = (2c1)

−1L−1| I1 〉+ (2c1)
−1(2α′′ − 3β′)∂c1 | I1 〉+ ν3c

−2
1 | I1 〉 (B.27)

The constant ν3 is undetermined at this order. At the next order of the recursion ν3
will be fixed, and a new undetermined multiple of c−4

1 | I1 〉 will appear. Etcetera.
It is useful to elaborate on why the solution, if it exists, is unique. The difference of

two solutions will satisfy at each order of the expansion the same Ward identities as the

irregular vector | I(1)(c1, β′) 〉, except for a shift of L0. At any order we checked, we could

not find any non-trivial “null irregular descendant” in I1 which satisfies the same Ward

identities of the irregular vector | I1 〉 defining I1. Hence the only ambiguity at order 2k is

by νk+2c
−2k
1 | I1 〉. The ambiguity is always fixed at the next order of the expansion.
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It should not be hard to prove uniqueness at all order in the expansion, assuming

a solution of this general form, by making the triangular form of the Ward identities

constraints more manifest. More precisely, it should not be hard to prove that at any

order, the only homogeneous solution for the Ward identities is v2k = c−2k
1 | I1 〉, and that

the equations at the next order cannot be solved with the source induced by v2k.

Thus, at least at the level of this formal power series in c2, we have a definition of the

basis

Ψr,1
∆0,β′(c1)Ψ

1,2
β′,α′′(c2) | I2 〉 (B.28)

labeled by the intermediate Liouville momentum β′ of the rank 1 irregular module, at least

as a power series in positive powers of c2
c1

2 and c1. In order to make statements which go

beyond this formal power series analysis, we will need more refined tools. But observe that

the exponential prefactor for the power series in c2 is suggestive of an asymptotic series,

rather than a convergent power series. One may imagine that the crucial conformal block

〈∆0|Ψr,1
∆0,β′(c1)Ψ

1,2
β′,α′′(c2) | I2 〉 , (B.29)

if well defined as a function, may be uniquely determined by a choice of Stokes sector at

c2 → 0, where the asymptotic expansion is valid.

B.2.2 Rank 1 plus regular to rank 1

In a similar fashion, we can look for a formal power series of descendants of a rank 1 vector

of parameters c1 and β′ which represents a regular vector at z and an irregular vector of

rank 1 at the origin, of parameters c1, α
′. We will denote the solution of the problem as

| IR1 〉 = Ψ∆2
β′,α′(z)| I1 〉 = zµzcµ1

1 e(β
′−α′)

2c1
z

∞
∑

k=0

zk | I(1)k (c1, αi) 〉 , (B.30)

and plugging in the Ward identities

L0| IR1 〉 = (∆α′ + c1∂c1 + z∂z +∆2) | IR1 〉
L1| IR1 〉 =

(

−2c1(α
′ −Q) + z2∂z + 2∆2z

)

| IR1 〉
L2| IR1 〉 =

(

−c21 + z3∂z + 3∆2z
2
)

| IR1 〉
Ln| IR1 〉 = zn (z∂z +∆2(n+ 1)) | IR1 〉 n > 2 (B.31)

we can again compute the coefficient recursively (after setting µz + µ1 = ∆β′ −∆2 −∆α′)

from

(

L0 −∆β′ − c1∂c1
)

| I(1)k (c1, α
′) 〉 = k| I(1)k (c1, α

′) 〉
(

L1 + 2c1(β
′ −Q)

)

| I(1)k (c1, α
′) 〉 = (µz + 2∆2 + k − 1)| I(1)k−1(c1, α

′) 〉
(

L2 + c21
)

| I(1)k (c1, α
′) 〉 = (µz + 3∆2 + k − 2)| I(1)k−2(c1, α

′) 〉 (B.32)

− 2c1(β
′ − α′)| I(1)k−1(c1, α

′) 〉
Ln| I(1)k (c1, α

′) 〉 = (µz +∆2(n+ 1) + k − n)| I(1)k−n(c1, α
′) 〉

− 2c1(β
′ − α′)| I(1)k−n+1(c1, α

′) 〉 n > 2
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The solution appears to exist and be unique for generic values of the parameters c1, z,

α′, β′, ∆2. At the first stages of the calculations, µ1 and µz are also fixed.

Let’s look at the first non-trivial level, k = 1. We only have non-trivial sources for the

L2 equation and L1 equation. We can satisfy both equations with (β′ − α′)∂c1 | I1 〉, if

µz = −2∆2 − 2(β′ −Q)(β′ − α′)

µ1 = ∆2 + (α′ − β′ +Q)(α′ − β′) . (B.33)

Again, we can add to that a µ3| I(1)(c1, α′) 〉, with the expectation that µ3 will be fixed at

the next order, etc.

We expect that it should not be hard to prove uniqueness at all order in the expansion,

assuming a solution of this general form, by making the triangular form of the Ward

identities constraints more manifest. More precisely, it should not be hard to prove that

at any order, the only homogeneous solution for the Ward identities is vk = c−k
1 | I1 〉, and

that the equations at the next order cannot be solved with the source induced by vk.

We take it to define, as a formal power series, the basis

Ψr,1
∆0,β′(c1)Ψ

(1)∆2

β′,α′ (z)| I1 〉 (B.34)

Again, this expansion has the form of an asymptotic expansion in z, and the conformal

blocks 〈∆0|Ψr,1
∆0,β′(c1)Ψ

(1)∆2

β′,α′ (z)| I1 〉, if they exist as actual functions, may be labeled by

the extra data of a Stokes sector as z → 0.

B.2.3 More general maps

It should be clear how one can pursue this strategy further, given sufficient amount of

patience. At the next stage, we can define an irregular module I2 of descendants of an

irregular vector of rank 2 |I2〉. For later convenience, we define I2 as the span (with

coefficients which are function of c1, c2) of vectors of the form

L̃−I∂
k1
c1 ∂

k2
c2 | I2 〉 (B.35)

where the symbols ∂c1 and ∂c2 are taken to commute with the Virasoro generators, and

L̃−n = L−n for n > 1, but we find convenient in our explicit calculations to define

L̃−1 = L−1 − 2c1∂c2 . (B.36)

We say that such a vector is a descendant of weight |I|+k1+2k2. We define an action

of the Virasoro algebra on I2 in the obvious way: commute raising operators through to

hit | I2 〉, apply the Ward identities for the rank 2 irregular vector and then act with the

derivatives.

The irregular module depends on the choice of Liouville momentum α′′ in the Ward

identities, not of the specific choice of ambient Verma module or of the specific realization

of the rank 2 irregular vector.
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It is straightforward, if tedious, to seek formal power series solutions for various useful

maps. The most important for our purposes is of course the image Ψ2,3
β′′,α′′′(c3) | I3 〉 of a

rank 3 irregular vector in I2. This can be built as a power series in c3,

| I(3)(c, α(3)) 〉 = cρ33 cρ22 e(α
(3)−α′′)S3(c)

∞
∑

k=0

ck3 | I(2)3k (c2, c1, α
′′) 〉 , (B.37)

It takes some work to find the correct prefactor exponent

S3(c) =
2c1c2
c3

− c32
3c23

− c21
c2

(B.38)

so that the ansatz works at the leading order. The vectors | I(2)3k (c2, c1, α
′) 〉 are expanded

as a sum of level s descendants, s ≤ k, multiplied by positive powers of ct1, 0 ≤ t ≤ 3(k−s),

and by c
−(3k−s+t)/2
2 . The Liouville momenta appear polynomially.

This allows a definition of a basis of the form

Ψr,1
∆0,β′(c1)Ψ

1,2
β′,β′′(c2)Ψ

2,3
β′′,α′′′(c3) | I3 〉 , (B.39)

at least as a formal power series. The series involves positive powers of
c3c31
c32

, c2
c21

and c1.

C Bases of conformal blocks of null vector equations

We here describe in detail how the null vector equations can be used to define certain bases

for the space of conformal blocks, and to construct the series expansions of their elements.

C.1 Solutions to the null vector equations - the regular case

We’ll now describe how to realize this program in detail before we apply the same method

to calculate series expansions for conformal blocks containing irregular singularities.

C.1.1 Power series solutions

For future work with the differential equation (5.5) it will be useful to factor out the

corresponding conformal block of the Gaussian free field,

F (y) := e−bφs(y)G(y) , (C.1)

where

e−bφs(y) = ybα3(z1 − y)bα1(y − z2)
bα2z−2α1α3

1 z−2α2α3
2 (z1 − z2)

−2α1α2 .

We find that the functions G(y; z1, z2), satisfy the equations

0 =

[

1

b2
∂2

∂y2
+

1

y − z1

z1
y

∂

∂z1
+

1

y − z2

z2
y

∂

∂z2
+ (C.2a)

+
2

b

(

α1

y − z1
+

α2

y − z2
+

α3

y

)

∂

∂y
− 1

y

∂

∂y

]

G(y) ,

0 =

[

y
∂

∂y
+ z1

∂

∂z1
+ z2

∂

∂z2
− λ

]

G(y) , (C.2b)
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where λ is defined as

λ := ∆0 −∆α1+α2+α3−b/2 . (C.3)

It will furthermore be useful to factorize the relevant solutions G(y; z1, z2) to (C.2) into

a part that is singular when z2 → 0, y → 0, and a regular part,

G(y; z1, z2) = Gs(y; z1, z2)Gr(y/z1, z2/y) , (C.4)

where

• Gs(y; z2, z1) is the function defined as

Gs := G0 z
λ
1

(

z2
z1

)µ( y

z1

)ν

, (C.5)

where G0 is constant with respect to y, z1 and z2, but may depend on α1, α2, α3, α0

and β, the constant λ is defined in (C.3), and µ and ν are defined as

µ = ∆β −∆α2+α3 , ν = b(β − α2 − α3) . (C.6)

• Gr(u, v) is a power series of the form

Gr(u, v) =
∞
∑

k=0

vk
∞
∑

l=0

ulGk,l , G0,0 = 1 . (C.7)

The equation (C.2b) is automatically satisfied by the ansatz (C.4), while differential equa-

tion (C.2a) is equivalent to

DGs
· Gr (y/z1, z2/z1) = 0 , DGs

:= G−1
s ·

(

D0 −
z2
y
D1

)

· Gs , (C.8)

where

D0 :=
1

b2
y2

∂2

∂y2
+ z1

∂

∂z1
+ z2

∂

∂z2
+

2

b

(

α1 + α2 + α3 −
b

2

)

y
∂

∂y

− z1
y

[

1

b2
y2

∂2

∂y2
+

2

b

(

α2 + α3 −
b

2

)

y
∂

∂y
+ z2

∂

∂z2

]

, (C.9a)

D1 :=
1

b2
y2

∂2

∂y2
+

2

b

(

α1 + α3 −
b

2

)

y
∂

∂y
+ z1

∂

∂z1

− z1
y

[

1

b2
y2

∂2

∂y2
+

2

b

(

α3 −
b

2

)

y
∂

∂y

]

. (C.9b)

We may construct solutions to (C.8) in the form of a double series expansion simlar

to (5.13). The recursion relations resulting from (C.8) take the form

Al Gk,l −Bk,l Gk,l+1 = Ck,l Gk−1,l −Dl Gk−1,l+1 . (C.10)

We are looking for a solution with Gk,l = 0 for k < 0 and Gk,l = 0 for l < 0. A so-

lution with G0,0 6= 0 will exist only if µ and ν satisfy the relation B0,−1 = 0, which is

equivalent to the equation DsGs = 0, where Ds is the differential operator proportional to

z1 in (C.9a). It is easy to check that B0,−1 = 0 follows from our definitions (C.6). The

recursion relations (C.10) will then determine Gk,l uniquely in terms of the first term G0,0.
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C.1.2 Lowest order term

The term of lowest order in the expansion of G(y; z1, z2) in powers of z2, defined by

G(y; z1, z2) = zλ1

∞
∑

k=0

(

z2
y

)µ+k

Gk(y; z1) , (C.11)

can be calculated explicitly. Indeed, it is clear that G0(y; z1) must satisfy
(

D0 + λ− µ
z1
y

)

G0(y; z1) = 0 . (C.12)

Writing G0(y; z1) = yb(α0+b/2−α1−α2−α3)H0(y; z1), we find that H0(y; z1) must satisfy
[

(y − 1)y2
∂2

∂y2
− [(C − 2)y −A+B − 1]

∂

∂y
−AB

]

H0(y; z1) = 0 , (C.13)

where A,B,C are given as

A = b(β + α1 − α0 − b/2) ,

B = 1− b(β + α0 − α1 − b/2) ,
C = 2− b(2α0 − b) . (C.14)

The equation (C.13) is satisfied by the hypergeometric function F (A,B;C; 1/y). Picking

the solution which has the required behavior for y → 0 gives us

G0(y; z1) = G
(0)
0 wb(β−α2−α3)F (A, 1− C +A; 1−B +A;w) . w :=

y

z1
. (C.15)

The constant prefactor G
(0)
0 is dependent on the normalization of the chiral vertex operators

Ψα2
α1α3

(y) and will be specified when it becomes relevant.

The behavior of the lowest order term F0(y; z1) of the z2-expansion for y → ∞ follows

from the well-known formula

F (A,B,C; z) = K1 (−z)−AF (A, 1− C +A; 1−B +A; 1/z) (C.16)

+K2 (−z)−BK1F (B, 1− C +B; 1−A+B; 1/z) ,

which implies the braid relation (5.16). The coefficients are explicitly given as

K1 =
Γ(C)Γ(A−B)

Γ(B)Γ(C −A)
, K2 =

Γ(C)Γ(B −A)

Γ(A)Γ(C −B)
.

For ℜ(2α0 −Q) > 0 we will therefore get a relation of the form (5.18) which allows us to

calculate the coefficients Fk from Fk(y; z1) as described in the main text.

C.2 Case n = 2

C.2.1 Differential equations

The function F (2)(y; c1, c2) defined in (5.24) satisfies the differential equations
[

1

b2
∂2

∂y2
+ T (2)

]

F (2)(y; z1, z2) = 0 , (C.17a)

[

y
∂

∂y
+ c1

∂

∂c1
+ 2c2

∂

∂c2
+∆α′′ + δb −∆α0

]

F (2)(y; c1, c2) = 0 , (C.17b)
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where ∆α = α(Q− α), δb = −1
2 − 3

4b
2,

T (2) :=− 1

y

∂

∂y
+

Λ4

y6
+

Λ3

y5
+

Λ2

y4
+

1

y3

(

Λ1 + c2
∂

∂c1

)

+
1

y2

(

2c2
∂

∂c1
+ c1

∂

∂c1
+∆α′′

)

.

Stripping off the free field part as above,

F (2)(y; c1, c2) := e−bφs(y)G(2)(y; c1, c2) , (C.18)

where

φs(y) =
c2
2y2

+
c1
y

− α′′ log y . (C.19)

the functions G(2)(y; c1, c2) satisfy the equations

0 =

[

1

b2
∂2

∂y2
+

1

y3
c2

∂

∂c1
+

1

y2

(

2c2
∂

∂c2
+ c1

∂

∂c1

)

+ (C.20a)

+
2

b

(

c2
y3

+
c1
y2

+
α′′

y

)

∂

∂y
− 1

y

∂

∂y

]

G(y) ,

0 =

[

y
∂

∂y
+ c1

∂

∂c1
+ 2c2

∂

∂c2
− λ

]

G(y) , (C.20b)

where λ = ∆α0 − ∆α′′−b/2. The first of these equations can be written as

D(2)G(2)(y; c1, c2)=0

D(2) := y2
∂2

∂y2
+

(

2bc1
y

+ 2bα′′ − b2
)

y
∂

∂y
+ b2

(

2c2
∂

∂c2
+ c1

∂

∂c1

)

+
c2
c1y

(

b2c1
∂

∂c1
+

2bc1
y

y
∂

∂y

)

.

(C.21)

C.2.2 Series solutions

We will look for a solution to (C.20) in the form

G(2)(y; c1, c2) = G(2)
s (y; c1, c2)G(2)

r (y/2bc1, c2/c1y) , (C.22)

where

• G(2)
s (y; c1, c2) is the function defined as

G(2)
s (y; c1, c2) := G

(2)
0 cµ0+ν1

1 cν22

(

y

2bc1

)ν

e
−σ

c21
c2 , (C.23)

where G
(2)
0 is constant with respect to c, c1 and c2. We will set

σ2 = β′ − α′′ , ν = bσ2 , µ0 + ν1 + ν2 = λ , (C.24)

to get the asymptotic behavior for c2 → 0 characteristic for an irregular singularity

with n = 2 as discussed in the previous sections. The exponents ν, ν2 will be

determined with the help of the differential equation below.
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• G(2)
r (u, v) is a power series of the form

G(2)
r (u, v) =

∞
∑

k=0

vk
∞
∑

l=k

ulG(2)
k,l , G(2)

0,0 = 1 . (C.25)

The recursion relations resulting from (C.20) take the form

ak,lG(2)
k,l + bk,lG(2)

k,l+1 + ck,lG(2)
k−1,l + dk,lG(2)

k−1,l+1 = 0 , (C.26)

where

ak,l = (ν + l − k)(ν + l − k + b(2α′′ −Q) + b2(λ− ν + k − l) , bk,l = ν − σ + l + 1− k ,

ck,l = b2(λ− ν2 − ν − (k − 1)− l) , dk,l = ν − (k − 1) + l + 1 . (C.27)

We are again looking for a solution with G(2)
k,l = 0 for k < 0 and G(2)

k,l = 0 for l < 0. This

requires the relation B0,−1 = 0, again. It is then easily found that

G(2)
0,1 = −A0,0G(2)

0,0 , (C.28a)

G(2)
1,0 = νG(2)

0,0 . (C.28b)

For k = 1, l = 0 we observe that B1,0 = 0. Instead of determining G(2)
1,1 we therefore get a

constraint on the exponents λ, ν2, ν:

A1,0G(2)
1,0 + (λ− ν2 − ν)G(2)

0,0 + (ν + 1)G(2)
0,1 = 0 . (C.29)

Inserting (C.28) and (C.27) yields the equation

ν2 =
ν

2b2
(3bQ− 3ν − 4α′′) . (C.30)

Then the subsequent equations fix the other G(2)
1,l in terms of G(2)

1,1 . At k = 2, similarly, G(2)
2,0

and G(2)
2,1 are solved for in terms of G(2)

1,1 . In the next equation, G(2)
2,2 does not appear, and

instead the equation fixes G(2)
1,1 . Then the subsequent equations fix G(2)

2,l in terms of G(2)
2,2

The equations for k = 3 will fix G(2)
2,2 but leave G(2)

3,3 undetermined. This pattern continues

when we go to higher values of k. The recursion relations (C.10) will therefore determine

G(2)
k,l uniquely in terms of the first term G(2)

0,0 .

C.2.3 Lowest order terms

We are looking for solutions of (C.20) which take the form of a power series expansion of

the form

G(2)(y; c1, c2) = G
(2)
0 cλ1

(

c2
c21

)ν2

e
−σ

c21
c2

(

G(2)
0 (y; c1) +O(c2/c1y)

)

.

The behavior for y → ∞ is of the form G(2)
0 (y; c1) = Nyb(α0+b/2−α′′)(1 + O(y)), where N

does not depend on y. Writing G(2)
0 (y; c1) = yb(α0+b/2−α′′)H0(y; c1), we find that H(2)

0 (y; c1)

must satisfy the differential equation
[

y3
∂2

∂y2
+
[

1− (C − 2)y
]

y
∂

∂y
−A

]

H(2)
0 (y; c1) = 0 , (C.31)
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where A and C are now given as

A = b(β′ − α0 − b/2) , C = 2− b(2α0 − b) . (C.32)

Equation (C.31) is the equation satisfied by the confluent hypergeometric function

F (A;C; 1/y).

The function G(2)
0 (y; c1) can be represented as

G(2)
0 (y; c1) = wbσ2Ψ(A;C; 1/w) , w :=

y

2bc1
, (C.33)

where Ψ(A;C; z) is the function defined by the integral representation

Ψ(A;C; z) =
1

Γ(A)

∫ ∞

0
dτ τA−1(1 + τ)C−A−1e−zτ . (C.34)

This function is the unique solution to the confluent hypergeometric equation which behaves

at infinity as Ψ(A;C; z) = z−A(1 +O(z−1)).

C.2.4 Reconstructing the conformal blocks

Assuming that | I2(c2, c1, α′′) 〉 has an expansion of the form (B.23) leads us to the claim

that F (y) must have an expansion of the form

F (2)(y; c1, c2) = e
c21
c2

(α′′−β′)
∞
∑

k=0

(

c2
yc1

)ν2+k

F (2)
k (y; c1) , (C.35)

where the higher order terms Gk(y; c1), k > 0 are obtained from G0(y; c1) by acting with

differential operators Dk(y, c1),

F (2)
k (y; c1) := D(2)

k (y, c1)F (2)
0 (y; c1) . (C.36)

The differential operators D(2)
k (y, c1) are again of the form

D(2)
k (y, c1) =

k
∑

l=−k

(

c1
y

)l k
∑

m=0

D(2)
k;l,m

(

y
∂

∂y

)m

, (C.37)

and can be calculated from (C.35) as soon as the power series expansions of Fk(y; c1) have

been calculated from the differential equation.

The rest of the analysis proceeds as in the case n = 0 above. We thereby get an-

other useful algorithm for computing the power series expansion of conformal blocks with

irregular singularities with the help of the null vector equations.

C.3 Case n = 1

Let us now consider conformal blocks with a degenerate insertion, two regular punctures

and a rank 1 irregular puncture. We will look at a solution which could be written as

F (1)(y; c′1, z2) := 〈α0 |Ψr,1
α0,β′−b/2(c1)V

(1)
+ (y)Ψ

(1)α2

β′,α′ (z2)| I1(α′) 〉 (C.38)

in the notations of 5.1, which will turn out to be unique.
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C.3.1 Differential equations

This function satisfies the differential equations

[

1

b2
∂2

∂y2
+ T (1)

]

F (1)(y; z1, z2) = 0 , (C.39)

[

y
∂

∂y
+ c′1

∂

∂c′1
+ z2

∂

∂z2
+∆α2 +∆α′ −∆α0

]

F (0)(y) = 0 , (C.40)

where

T (1) :=
Λ′
2

y4
+

Λ′
1

y3
+

1

y2

(

c′1
∂

∂c′1
+∆α′

)

+
∆α2

(y − z2)2
+

1

y(y − z2)
z2

∂

∂z2
− 1

y

∂

∂y
.

It will again be useful to factor out the free field part:

F (1)(y) := e−bφs(y)G(1)(y) , (C.41)

where

e−bφs(y) = e
−b

c′1
y (y − z2)

bα2z−2α2α′

2 e
2α2

c′1
z2 . (C.42)

We find that the functions G(1)(y; c′1, z2), n = 0, 1, 2 satisfy the equations

0 =

[

1

b2
∂2

∂y2
+

1

y2
c′1

∂

∂c′1
+

1

y − z2

z2
y

∂

∂z2
+

2

b

(

α2

y − z2
+

c′1
y2

+
α′

y

)

∂

∂y
− 1

y

∂

∂y

]

G(1)(y) ,

(C.43a)

0 =

[

y
∂

∂y
+ c′1

∂

∂c′1
+ z2

∂

∂z2
− λ

]

G(1)(y) , (C.43b)

where λ is defined in (C.3).

C.3.2 Series solutions

We will look for a solution to (C.43) in the form

G(y; c′1, z2) = Gs(y; c
′
1, z2)Gr(y/2bc

′
1, z2/y) , (C.44)

where

• Gs(y; c
′
1, z2) is the function defined as

Gs(y; c
′
1, z2) := G0 (c

′
1)

µ0+µ1(c2)
µ′

2

(

y

2bc′1

)ν

e
2(β′−α′−α2)

c′1
z2 , (C.45)

where G0 is constant with respect to c, c1 and c2, and

ν = b(β′ − α′ − α2) ≡ bσ2 , µ0 + µ1 + µ′
2 = λ . (C.46)

The coefficient µ′ will be determined by the differential equation.

– 64 –



J
H
E
P
1
2
(
2
0
1
2
)
0
5
0

• Gr(u, v) is a power series of the form

Gr(u, v) =
∞
∑

k=0

vk
∞
∑

l=k

ulHk,l , H0,0 = 1 . (C.47)

In order to calculate the series expansion it is useful to rewrite equation (C.43a) as

(

D(1)
0 − z2

y
D(1)

1

)

G(1)(y; c′1, z2) = 0 , (C.48)

where

D(1)
0 :=

1

b2
y2

∂2

∂y2
+

2

b

(

α′ + α2 −
b

2

)

y
∂

∂y
+ c′1

∂

∂c′1
+ z2

∂

∂z2
+

1

b2
2bc′1
y

y
∂

∂y
, (C.49)

D(1)
1 :=

1

b2
y2

∂2

∂y2
+

2

b

(

α′ − b

2

)

∂

∂y
+ c′1

∂

∂c′1
+

1

b2
2bc′1
y

∂

∂y
.

The recursion relations will take the same form (C.26) as in the case n = 2 above, with

coefficients now given as

ak,l = (ν + l − k)(ν + l − k + b(2α′ + 2α2 −Q) + b2(λ− ν + k − l) ,

bk,l = ν − σ + l + 1− k ,

ck,l = (ν + l − k + 1)(ν + l − k + 1− bQ+ 2bα′) + b2(λ− ν2 − ν − (k − 1)− l) ,

dk,l = ν − (k − 1) + l + 1 . (C.50)

The following discussion is very similar to the discussion we gave in the case n = 2 after

equation (C.27). It is found, in particular, that the exponent µ′
2 equals

µ′
2 = ν2 +

1

b2
ν(ν − bQ+ 2bα′) =

2

b2
ν(bQ− ν − bα′ − 2bα2) , (C.51)

which is exactly as required by our representation-theoretic analysis in the previous section.

It is worth noting that the lowest order term is given by the same confluent hyperge-

ometric function we found in the case n = 2.

D Existence of collision limits

In this appendix we’ll describe two approaches to prove the existence of the collision limits

in the sense of formal series expansions. To be more precise, we’ll show that the series

expansions for the conformal blocks can be rearranged in such a way that the collision

limits exist order by order in the series expansion.

These results provide further evidence for our conjectures on the existence of irregular

vertex operators. They are also used in order to support our conjectures on physical

correlation function in section 6.
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D.1 Warmup

It is useful to look first at the most basic collision limit, of two regular vectors into a

rank 1 irregular vector. Remember that the collision limit at the level of conformal blocks,

from |R(1)(z) 〉 to | I(1)(c1) 〉 with constant c1 = αzz and α′ = αi + αz, requires a rescaling

both by an uninteresting power of z, but also a much more important α
∆f−∆α′

z . Inside a

correlation function, αf will be integrated over, and thus such a divergent factor would be

troublesome. On the other hand, in correlation functions, |R(1)(z) 〉 will be accompanied

by a normalization factor

G0 =
√

C0 , C0 := C(αf , αz, αi) (D.1)

where C(α1, α2, α3) is the function proposed in [10, 11, 33]

C(α1, α2, α3) = (µ0)
1
b
(Q−α1−α2−α3)× (D.2)

× Υ0Υ(2α1)Υ(2α2)Υ(2α3)

Υ(α1+α2+α3−Q)Υ(α1+α3−α2)Υ(α1+α2−α3)Υ(α2+α3−α1)
,

which was later shown [28, 29] to represent the three point function of Liouville theory.

Here µ0 = πµγ(b2)b2−2b2 .

The Barnes double Gamma function Γb(x) is known to have the following asymptotic

behavior [27]:

log Γb(x) =
1

2
x(Q− x) log x− 1

12
(1 +Q2) log x+

3

4
x2 − Q

2
x+O(x0) . (D.3)

This implies the following asymptotic behavior of the function Υ(x)

logΥ(x) = −1

2
∆x log∆x +

1

12
(1 +Q2) log∆x +

3

2
∆x +O(x0) , (D.4)

using the notation ∆x = x(Q− x). This expansion is valid for large imaginary x.

If we take the limit of large αz with fixed α′, we have a neat asymptotic behavior

C(αf , αz, α
′ − αz) = (µ0)

1
b
(Q−αf−α′) × Υ0Υ(2αf )

Υ(αf + α′ −Q)Υ(α′ − αf )
(2αz)

2∆f−2∆α′ ,

Thus the normalization factor produces exactly the divergent rescaling required for the

proper limit α
∆f−∆α′

z |R(1)(z) 〉 → | I(1)(c1) 〉.4 We are left with the proper normalization

factor for the Ψr,1
αf ,α′ map:

Gr,1 =
√

Cr,1 , Cr,1 := (µ0)
1
b
(Q−αf−α′) × Υ0Υ(2αf )

Υ(αf + α′ −Q)Υ(α′ − αf )
22∆f−2∆α′

(D.5)

This result is consistent with the AGT relation.

4For clarity, we omitted a sign: (2αz)
2∆f−2∆α′ should have been (2αz)

∆f−∆α′ (−2αz)
∆f−∆α′ . The two

factors produce the rescalings for holomorphic and antiholomorphic conformal blocks, as αz is imaginary

in the collision limit! We omit similar signs in the following.
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D.2 Direct approach

The existence of a solution to the Virasoro constraints in the form of a formal series

like (B.23) is far from obvious. The corresponding statement (3.4) about the vectors

|R(2)(z) 〉 was obtained from well-known results in subsection 3.2. We are now going to

argue that there exists a limit of |R(2)(z) 〉 in which the formal series (B.23) can be obtained

from a rearrangement of the series (3.4).

D.2.1 First collision limit

The recursion relations (B.21) do not have a good collision limit as w → 0, β + α1 = β′,
α1w = c1. Although the differential operator in w does, the ∆β term blows up. As we

aim to derive the expansion for |RI1 〉, representing an irregular vector at the origin and a

regular vector at z, it is actually natural to keep α3 + α1 = α′ fixed in the collision limit.

This means that ∆β −∆3 = (Q− β − α3)(β
′ − α′) only blows up linearly in the limit, but

still blows up.

There is a useful reorganization of this sum which does have a good limit. Let’s modify

the ansatz to

|R(2)(z) 〉 = z∆β−∆2−∆3

(

1− z

w

)A ∞
∑

k=0

zk|R(1)
k 〉 (D.6)

for some constant A. This amounts to a redefinition of |R(1)
k 〉 by multiples of w−s|R(1)

k−s〉,
with s > 0. The action of zk+1 ∂

∂z + wk+1 ∂
∂w on the new prefactor is easy to compute, and

we get a modified recursion relation

(L0 − w∂w −∆1 −∆β) |R(1)
k 〉 = k|R(1)

k 〉 (D.7)
(

Ln − wn+1∂w −∆1(n+ 1)wk
)

|R(1)
k 〉 = (∆β + n∆2 −∆3 + k − n)|R(1)

k−n〉+

+A
n
∑

s=1

wn−s|R(1)
k−s〉 n > 0 ,

Now we are in a good shape to take a collision limit. At order s = n, we have now

the combination ∆β −∆3 + A, which can be finite if A grows as 2α1(α
′ − β′). Then the

term s = n − 1 is also finite, controlled by Aw, and all other terms in the sum drop out.

The recursion relations take exactly the form of (B.32) as long as Aw → 2c1(α
′ − β′), and

A = µz +∆2 −∆β +∆3 = 2α1(α
′ − β′)−∆z − (Q− β′ + α′)(α′ − β′).

Thus we have the following situation. We have certain descendants |R(1)
k 〉 which satisfy

the recursion relations, are built our of |R(1)〉 by acting with Virsoro generators, and powers

of ∂w and w−1, with coefficients which are rational functions of the Liouville momenta. The

denominators of the rational functions are the usual Kac determinants for ∆β .

In the collision limit, |R(1)〉 ∼ w−2α1β |I(1)〉. We can just write |R(1)〉 = w−2α1β |R̃(1)〉,
and for any descendant |R(1)

k 〉 = w−2α1β |R̃(1)
k 〉 for some descendant |R̃(1)

k 〉 of |R̃(1)〉, and
replace w = c1/α1. The coefficients will be rational functions of the Liouville momenta,

and we can ask if these rational functions have a finite collision limit.
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If so, the collision limit of |R̃(1)
k 〉 will give us some |I(1)k 〉 which automatically satisfy

the recursion relation for the coefficients of the expansion of |RI(1)〉! For example

|R̃(1)
1 〉 =

(

∆β +∆2 −∆3

2∆β
L−1 −

∆β +∆2 −∆3

2∆β
α1∂c1 −

∆β +∆2 −∆3

2∆β

2α1β

w
+

A

w

)

|R̃(1)〉
(D.8)

has a finite limit

|I(1)1 〉 =
(

(α′ − β′)∂c1 +
(β′ −Q)(∆2 + (α′ − β′)(Q+ α′ − β′)

c1

)

|R̃(1)〉 . (D.9)

Crucially, the action of the left hand side of the Ward identities on descendants of |R̃(1)〉
goes smoothly to the action on the corresponding descendants of |I(1)〉. The coefficients

on the right hand sides of the Ward identities are finite. So the only way the coefficients of

the descendants in |R̃(1)
k 〉 could start blowing in the collision limit up at some order t of the

recursion, rather than having a finite limit, is if the left hand side of the Ward identities

annihilates the part of the answer which is blowing up.

If we assume the uniqueness property for |I(1)k 〉, then the divergent piece at order t

must be a multiple of vk = c−k
1 | I1 〉, but then the equations at the next order cannot be

solved because the source at the leading order in α1 is the one induced by vk. Thus the

collision limit |R(2)〉 ∼ w2α1α3 |IR(1)〉 will give us a solution for |IR(1)〉, as long as the

uniqueness assumption is true.

Notice that the prefactor also behaves reasonably well in the limit. We should re-

member that in order to have a good collision limit for the Ward identities, |R(2)(z) 〉 is

multiplied by (−w)2α1α3 , and use |R(1)〉 = (−w)−2α1β |R̃(1)〉 (we inserted the minus signs

for convenience), so that the overall prefactor of the expansion of (−w)2α1α3 |R(2)(z) 〉 in

|R̃(1)
k 〉 is

w−2α1β+2α1α3z∆β−∆2−∆3

(

1− z

w

)A

= (−w)−2α1(β′−α′)−Azν
(

1− w

z

)A

→ (−w)∆z−∆β′−α′zνe
2c1
z

(β′−α′) ,

(D.10)

so that we have almost recovered the prefactor in |IR(1)〉. We dropped some phase which

cancels against the anti-holomorphic conformal blocks.

This is not enough to convert (−w)∆z−∆β′−α′ to c
∆z−∆β′−α′

1 and reproduce |IR(1)〉.
For that, we need an extra power α

∆z−∆β′−α′

1 . Furthermore, we need a rescaling factor to

convert |R̃(1)〉 to |I(1)〉, as in section D.1. We will find both momentarily in the collision

limit of the normalization factors.

D.2.2 Normalization

The original vector |R(2)(z) 〉 is normalized by the square root of C(α0, α1, β)C(Q −
β, α2, α3). In the collision limit, C(α0, α1, β) behaves as in section D.1 and goes to

Cr,1(α0, β
′)α

2∆0−2∆β′

1 . That divergence cancels out as in section D.1 and leaves the correct

normalization for Ψr,1
α0,β′ .
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On the other hand,

C(Q− β′ + α1, α2, α
′ − α1) ∼ (D.11)

∼ (µ0)
1
b
(β′−α2−α′) × Υ0Υ(2α2)

Υ(α′ − β′ + α2)Υ(α′ − β′ +Q− α2)
(2α1)

2∆z−2∆β′−α′ ,

and thus produces exactly the other required normalization factor.

We are left with the proper normalization factor for Ψ
(1)∆2

β′,α′ : the square root of

C
(1)∆2

β′,α′ = (µ0)
1
b
(β′−α2−α′) × Υ0Υ(2α2)

Υ(α′ − β′ + α2)Υ(α′ − β′ +Q− α2)
22∆z−2∆β′−α′ ,

D.2.3 Second collision limit

Next, we would like to take a limit from |IR(1)〉 to the vector | I(2)(c, α) 〉 representing an

irregular vector of rank 2 in the irregular module of rank 1. We know the appropriate

collision limit: z → 0 with finite α2z
2 = c2, α2z + c1, α2 + α′ = α′′. All that we need to

find out is how to reorganize the ansatz for |IR(1)〉 so that it has a finite limit.

Notice that the resulting rank 2 irregular vector has parameters c2, α2z + c1, but we

are working in a rank 1 module of parameter c1. In our original ansatz for | I(2)(c, α) 〉
we kept for simplicity the same c1 both in the rank 2 irregular vector, and in the rank 1

irregular module.

It is much more natural to take a different starting point: rather than |IR(1)〉 we can

start from a |ĨR(1)〉 which represents inside a rank 1 module of parameter c1 a regular

puncture at z and an irregular vector of parameters c′1 = c1 − α2z and α′ at the origin.

Then the collision limit will give back a rank 2 vector of parameters c2,c1.

The vector |ĨR(1)〉 is simply produced by acting on |IR(1)〉 by exp (−α2z∂c1). This

produces an expression of the form

| ĨR1 〉 = zµz(c1 − α2z)
µ1 e(β

′−α′)
2c1
z

∞
∑

k=0

zk | Ĩ(1)k (c1) 〉 , (D.12)

up to an overall factor e−2α2(β′−α′) which we will deal with momentarily.

In order to have a good, term-by-term collision limit we need to further rearrange the

sum, by pulling out an overall factor of (1 − α2z
c1

)−ν1 . Thus we re-define the | Ĩ(1)k (c1) 〉
appropriately, and write

| ĨR1 〉 = zµzcν11 (c1 − α2z)
µ1−ν1 e(β

′−α′)
2(c1−α2z)

z

∞
∑

k=0

zk | Ĩ(1)k (c1) 〉 , (D.13)

The Ward identities satisfied by | ĨR1 〉 are

L0| ĨR1 〉 = (∆α′ + c1∂c1 + z∂z +∆2) | ĨR1 〉
L1| ĨR1 〉 =

(

−2(c1 − α2z)(α
′ −Q) + z2 (∂z + α2∂c1) + 2∆2z

)

| ĨR1 〉
L2| ĨR1 〉 =

(

−(c1 − α2z)
2 + z3 (∂z + α2∂c1) + 3∆2z

2
)

| ĨR1 〉
Ln| ĨR1 〉 = zn (z (∂z + α2∂c1) + ∆z(n+ 1)) | ĨR1 〉 n > 2 (D.14)
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This gives a recursion for the | Ĩ(1)k (c1) 〉:

L0| Ĩ(1)k (c1) 〉 =
(

∆β′ + c1∂c1
)

| Ĩ(1)k (c1) 〉 (D.15)

L1| Ĩ(1)k (c1) 〉 = −2c1(β
′ −Q)| Ĩ(1)k (c1) 〉+ (µz + 2∆2 + k − 1 + 2α(β′ −Q))| Ĩ(1)k−1(c1) 〉

+ α2(∂c1 + ν1/c1)| Ĩ(1)k−2(c1) 〉
L2| Ĩ(1)k (c1) 〉 = −c21| Ĩ(1)k (c1) 〉+ (µz + 3∆2 + k − 2− α2

2 + 2α2(β
′ − α′))| Ĩ(1)k−2(c1) 〉

− 2c1(β
′ − α′ − αz)| Ĩ(1)k−1(c1) 〉+ α2(∂c1 + ν1/c1)| Ĩ(1)k−3(c1) 〉

Ln| Ĩ(1)k (c1) 〉 = (µz +∆2(n+ 1) + k − n+ 2α2(β
′ − α′))| Ĩ(1)k−n(c1) 〉

− 2c1(β
′ − α′)| Ĩ(1)k−n+1(c1) 〉+ α2(∂c1 + ν1/c1)| Ĩ(1)k−n−1(c1) 〉 n > 2

We want to obtain a power expansion in c2, so it is OK to scale | Ĩ(1)k (c1) 〉 →
αk/2| Ĩ(1)k (c1) 〉. As we have a finite µz + 2∆2 + 2α2(β

′ − Q) = 2(α′′ − β′)(β′ − Q) then

the Ward identities for the rescaled vectors have a neat limit to the Ward identities we are

after

L0| Ĩ(1)k (c1) 〉 =
(

∆β′ + k + c1∂c1
)

| Ĩ(1)k (c1) 〉
L1| Ĩ(1)k (c1) 〉 = −2c1(β

′ −Q)| Ĩ(1)k (c1) 〉+ (∂c1 + ν1/c1)| Ĩ(1)k−2(c1) 〉
L2| Ĩ(1)k (c1) 〉 = −c21| Ĩ(1)k (c1) 〉+ (3Q− 2α′′)| Ĩ(1)k−2(c1) 〉
L3| Ĩ(1)k (c1) 〉 = −2c1| Ĩ(1)k−2(c1) 〉
L4| Ĩ(1)k (c1) 〉 = −| Ĩ(1)k−4(c1) 〉
Ln| Ĩ(1)k (c1) 〉 = 0 n > 4 (D.16)

Thus, using the assumption of uniqueness, through the collision limit we have verifies

the existence of a solution to this recursion, and of Ψ1,2 as a formal power series.

Finally, we should look at the prefactor, remembering from section 2 that we expect

z2α2α′

e−
2α2(c1−zα2)

z | ĨR1 〉 to have a good collision limit

zµz+2αaα′

cν11 (c1 − α2z)
µ1−ν1 e(β

′−α′)
2(c1−α2z)

z e−
2α2(c1−α2z)

z =

cν11 zµz+µ1+2α2α′−ν1αµ1−ν1
2 (1− c1

α2z
)µ1−ν1 e(β

′−α′′)
2(c1−α2z)

z ∼

cν11 cν22 αµ1−ν1−ν2
2 e

(α′′−β′)
c21
c2 e−2α2(β′−α′′) (D.17)

Hence we find the desired rank 2 irregular vector ansatz, with a spurious power prefactor

α
2α2(β′−α′′)−1/2∆β′−α′′

2 and an exponential e−2α2(β′−α′′).

D.2.4 Normalization

The effect of the second collision limit on the normalization of Ψ(1) is simple:

C
(1)∆2

β′,α′′−α2
= (µ0)

1
b
(β′−α′′) × Υ0Υ(2α2)

Υ(α′′ − β′)Υ(α′′ − β′ +Q− 2α2)
22∆z−2∆β′−α′ ,
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has a single divergent factor, which we can decompose into

(2α2)
∆β′−α′′−4α2(β′−α′′)e4α2(β′−α′′) (D.18)

This fully cancels the spurious prefactors we found in the collision limit.

We are left with the normalization for Ψ1,2

C1,2
β′,α′′ = (µ0)

1
b
(β′−α′′) × Υ0

Υ(α′′ − β′)
2−∆β′−α′′ ,

D.2.5 Generalizations

There is no obvious reason for which this limit procedure cannot be iterated. Starting from

Ψ
(1)∆1

γ′,β′ (w)Ψ
(1)∆2

β′,α′ (z)|I1〉 (D.19)

expanded in powers of z and pulling the Virasoro generators and c1 derivatives through

Ψ
(1)∆1

γ′,β′ (w) we can write it as a sum of descendants of the formal module |IR1〉 representing
an irregular puncture at the origin and a regular puncture at w. Then a collision limit

|IR1〉 → |I2〉 sending w → 0 to produce an irregular puncture of rank two should give us

the formal series for

Ψ
(2)∆2

β′′,α′′(z)|I2〉 (D.20)

expanded in positive powers of z. Then a further limit z → 0 should give us the formal

power series expansion of Ψ2,3
β′′,α′′′ |I3〉, and so on.

D.3 Existence of the collision limit (n = 0) → (n = 1) from null vector equations

We want to study the behavior of G(0)(y; z1, z2) in the limit z1 → 0, α1 → ∞, α3 → ∞ such

that α′ := α1 + α3 and c′1 := α1z1 are kept fixed. In order to get a well-defined limit we

will furthermore send the intermediate representation label β → ∞ such that β′ := β +α1

stays finite. We will use the notation lim(0)→(1) for the limit defined in this way.

The key observation is that the differential operator D has a finite limit D(1) in the

collision limit lim(0)→(1). However, it is not straightforward to analyze the behavior of

G(y; z1, z2) in the collision limit using the factorization (C.4) due to the divergence of µ′

in the limit under considertation. This divergence yields divergent behavior both in the

prefactor Gs and in the power series Gr(y/z1, z2/z1) appearing in (C.4). We are going to

show that the divergence in Gr(y/z1, z2/z1) can be factored out, and that it essentially5

cancels the divergence in Gs.

D.3.1 Existence of lim(0)→(1) Gr(y/z1, z2/z1)

The trick is to replace the factorization (C.4) by

G(y; z1, z2) = G′
s(y; z1, z2)G′

r (y/z1, z2/z1) , (D.21)

where G′
s(y; z2, z1) is the function defined as

G′
s(y; z1, z2) := G0 z

λ
1

(

z2
z1

)µ( y

z1

)ν (

1− z2
z1

)ρ

. (D.22)

5There is going to be a remaining divergent piece that cancels in physical correlation functions.
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The exponent ρ has to be chosen appropriately. The function G′
r ≡

(

1− z2
z1

)−ρGr in (D.21)

is a convergent power series in z2/z1, y/z1, allowing us to interpret the relation between

Gr(y/z1, z2/z1) and G′
r(y/z1, z2/z1) as a relation between power series.

In order to cancel the divergence from µ in G(0)
r (y/z1, z2/z1), we will choose ρ such

that

µ′ := µ+ ρ (D.23)

stays finite. Indeed, we then have

G′
s(y; z1, z2) = e±πρG0 z

λ
1

(

z2
z1

)µ′ (

y

z1

)ν (

1− z1
z2

)ρ

. (D.24)

This function has a simple behavior in the collision limit

G′
s(y; z1, z2) ∼ e±πρG0 α

λ−µ′−ν
1 (c′1)

λ

(

z2
c′1

)µ′ (

y

c′1

)ν

e
2σ2

c′1
z2

(

1 +O(α−1
1 )
)

. (D.25)

On the right hand side of (D.25) we identify the function that was denoted G(1)
s (y; c′1, z2)

in subsection C.3 provided that we adopt the choice for µ′ given in (C.46). The prefac-

tor e±πρ drops out when one forms physical correlation functions by combining holomor-

phic and anti-holomorphic conformal blocks. Choosing the normalization constant G0 as
√

C(α0, α1, β)C(Q− β, α2, α3), we find as in subsection D.2 that the constant prefactor

G0 α
λ−µ′−ν
1 stays finite in this limit. We may finally conclude that lim(0)→(1)DGs

exists,

which implies that lim(0)→(1) Gr(y/z1, z2/z1) exists, as we wanted to show.

D.3.2 Asymptotics of lowest order terms

We had previously seen that the differential equation (C.8) determines the higher order

terms of the expansion in powers of z2/z1 in terms of the lowest order term G0(y; z1), for

which we had found the expression (C.15). It is therefore interesting to understand what

happens in the limit of interest to G0(y, z1). To this end we shall employ the the integral

representation

F (A, 1−C+A; 1−B+A;w) =
Γ(1−B +A)

Γ(A)Γ(1−B)

∫ 1

0
dt tA−1(1−t)−B(1−tw)C−A−1 . (D.26)

In the limit in question we have w → ∞, B → ∞ such that w/B → u := y/2bc′1. In order

to study this limit we may use the substitution τ := −tz to rewrite the integral (D.26) as

F (A, 1− C +A; 1−B +A;w) =

=
Γ(1−B +A)

Γ(A)Γ(1−B)
(−w)−A

∫ −z

0
dτ τA−1(1 + τ)C−A−1

(

1 +
τ

w

)−B
.

(D.27)

The behavior of the prefactor in (D.26) is found by using Stirling’s formula:

Γ(1−B +A)

Γ(1−B)
∼

B→∞
(−B)A , (D.28)

– 72 –



J
H
E
P
1
2
(
2
0
1
2
)
0
5
0

while the behavior of the integrand in (D.27) follows from
(

1 +
τ

w

)−B
=
(

1 +
τ

uB

)−B
∼

B→∞
e−

τ
u . (D.29)

By combining these ingredients we are lead to the conclusion that

lim
B,w→∞

u=w/B fixed

F (A, 1− C +A; 1−B +A;w) = u−AΨ(A;C; 1/u) , (D.30)

where the function Ψ(A;C; z) is defined by the integral representation (C.34). We may

thereby conclude that the following limit exists:

lim
(0)→(1)

α1
b(α2+α3−β)G(0)

0 (y; z1) = G(1)
0 (y; c′1) . (D.31)

D.4 Existence of the collision limit (n = 1) → (n = 2) from null vector equations

We want to study the behavior of G(1)(y; c′1, z2) in the limit z2 → 0, c′1 → ∞, α2 → ∞,

α′ → ∞ such that

α′′ := α2 + α′, c1 := c′1 + z2α2, and d2 :=
√
α2 z2 , (D.32)

are kept fixed. We will use the notation lim(1)→(2) for the limit defined in this way.

The existence of this limit will again be based on the fact that the differential operator

D(1) turns into D(2). Our goal will be to rewrite G(1)
(

y; c′1, z2
)

in the form

G(1)
(

y; c′1, z2
)

= G̃(1)
s

(

y; c1, d2
)

G̃(1)
r

(

y/2bc1, d2/c1
)

, (D.33)

where G̃(1)
r

(

y/2bc1, d2/c1
)

is a power series in the indicated variables. If G̃(1)
s

(

y; c1, d2
)

turns

out to have a finite collision limit, the existence of a limit for
(

G̃(1)
s

)−1 ·D(1) · G̃(1)
s will imply

the existence of the limits for the expansion coefficients of G̃(1)
r

(

y/2bc1, d2/c1
)

. In order to

take the limit lim(1)→(2) we will need to rearrange the series expansion of G(1)(y; c′1, z2) in
two steps:

Step 1. First, let us invert the relations (D.32),

α′ = α′′ − α2, c′1 = c1 −
√
α2d2, and z2 =

d2√
α2

, (D.34)

and rewrite the formal series solution G(1)(y; c′1, z2) of D(1)G(1)(y; c′1, z2) = 0 as a formal

expansion in powers of d2/c1 which is denoted as G(1)(y; c1, d2). This expansion may be

constructed by rewriting the differential equations (C.43) in terms of the variables d2 and

c1. We find

0 =

[

1

b2
y3

∂2

∂y2
+

2

b
(c1 + y(α− b))y

∂

∂y
+ κy (D.35a)

− d2√
α2

(

c1
∂

∂c1
+

1

b2
y2

∂2

∂y2
+

(

2

b
c1 − y

)

∂

∂y

)

+ d22

(

∂

∂c1
+

2

b

∂

∂y

)]

G(y; c1, d2) ,

0 =

[

y
∂

∂y
+ c1

∂

∂c1
+ d2

∂

∂d2
− κ

]

G(y; c1, d2) . (D.35b)

Observe that the differential equations (D.35) become the differential equations satisfied

by G(2)(y; c1, c2) with c2 = d22 in the limit lim(1)→(2).
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Step 2 Let us finally modify the factorization (C.44) into (D.33), where G̃(1)
s (y; c1, d2) is

the function defined as

G̃(1)
s

(

y; c1, d2
)

:= G
(1)
0 e

2(β′−α′−α2)
c′1
z2 (c′1)

µ0+µ1 z
µ′

2
2

(

y

2bc′1

)ν (c1
c′1

)µ0+ν1−ν

(D.36)

= G
(1)
0 e

2(β′−α′′)
c′1
z2 cµ0+ν1

1 z
µ1+µ′

2−ν1
2 (−α2)

µ1−ν1

(

1− c1
α2z2

)µ1−ν1 ( y

2bc1

)ν

,

where ν1 is given in (B.26). Note that

G̃(1)
r

(

y/2bc1, d2/c1
)

=

(

c′1
c1

)µ0+ν1−ν

G(1)
r

(

y/2bc1, d2/c1
)

. (D.37)

Before taking the limit lim(1)→(2) we may use the expression for c′1 in (D.34) and expand

the factor (c′1/c1)
µ0+ν1−ν appearing in the relation (D.37) as a power series in d2/c1. The

relation (D.37) may therefore be understood as a relation between formal power series in

d2/c1.

Having reorganized the formal series expansion of G(y; c1, d2) in this way finally allows

us to take the limit lim(1)→(2).

(

1− c1
α2z2

)µ′

2−ν1

= e
−2σ2

√
α2

c1
d2 e

−σ2
c21
c2

(

1 +O
(

α
− 1

2
2

)

)

. (D.38)

Using this and keeping in mind that µ1 + µ′
2 = ν1 + ν2 we find that G̃(1)

s

(

y; c1, d2
)

behaves

in the collision limit as

G̃(1)
s

(

y; c1, d2
)

∼ e±πi(µ1−ν1)G
(2)
0 cµ0+ν1

1 cν22 e
−σ2

c21
c2

(

y

2bc1

)ν

, (D.39)

where G
(2)
0 := G

(1)
0 e−2σ2α2αµ1−ν1−ν2 . This combination has a finite limit as was observed

in subsection D.2.

Combining these observations with the fact that D(1) turns into D(2) in this limit,

we may argue as before in the case of the limit lim(0)→(1) that the formal expansion of

G̃(1)
r (y; c1, d2) in powers of d2 approaches the expansion of G(2)

r (y; c1, c2), order by order

in c2.
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