2,217 research outputs found

    Quadratic Lagrangians and Topology in Gauge Theory Gravity

    Get PDF
    We consider topological contributions to the action integral in a gauge theory formulation of gravity. Two topological invariants are found and are shown to arise from the scalar and pseudoscalar parts of a single integral. Neither of these action integrals contribute to the classical field equations. An identity is found for the invariants that is valid for non-symmetric Riemann tensors, generalizing the usual GR expression for the topological invariants. The link with Yang-Mills instantons in Euclidean gravity is also explored. Ten independent quadratic terms are constructed from the Riemann tensor, and the topological invariants reduce these to eight possible independent terms for a quadratic Lagrangian. The resulting field equations for the parity non-violating terms are presented. Our derivations of these results are considerably simpler that those found in the literature

    A new form of the Kerr solution

    Get PDF
    A new form of the Kerr solution is presented. The solution involves a time coordinate which represents the local proper time for free-falling observers on a set of simple trajectories. Many physical phenomena are particularly clear when related to this time coordinate. The chosen coordinates also ensure that the solution is well behaved at the horizon. The solution is well suited to the tetrad formalism and a convenient null tetrad is presented. The Dirac Hamiltonian in a Kerr background is also given and, for one choice of tetrad, it takes on a simple, Hermitian form.Comment: 8 pages, LaTeX, no figures. Corrected and improved version. To appear in Phys. Rev.

    Fermion absorption cross section of a Schwarzschild black hole

    Full text link
    We study the absorption of massive spin-half particles by a small Schwarzschild black hole by numerically solving the single-particle Dirac equation in Painleve-Gullstrand coordinates. We calculate the absorption cross section for a range of gravitational couplings Mm/m_P^2 and incident particle energies E. At high couplings, where the Schwarzschild radius R_S is much greater than the wavelength lambda, we find that the cross section approaches the classical result for a point particle. At intermediate couplings we find oscillations around the classical limit whose precise form depends on the particle mass. These oscillations give quantum violations of the equivalence principle. At high energies the cross section converges on the geometric-optics value of 27 \pi R_S^2/4, and at low energies we find agreement with an approximation derived by Unruh. When the hole is much smaller than the particle wavelength we confirm that the minimum possible cross section approaches \pi R_S^2/2.Comment: 11 pages, 3 figure

    New Techniques for Analysing Axisymmetric Gravitational Systems. 1. Vacuum Fields

    Get PDF
    A new framework for analysing the gravitational fields in a stationary, axisymmetric configuration is introduced. The method is used to construct a complete set of field equations for the vacuum region outside a rotating source. These equations are under-determined. Restricting the Weyl tensor to type D produces a set of equations which can be solved, and a range of new techniques are introduced to simplify the problem. Imposing the further condition that the solution is asymptotically flat yields the Kerr solution uniquely. The implications of this result for the no-hair theorem are discussed. The techniques developed here have many other applications, which are described in the conclusions.Comment: 30 pages, no figure

    Imposing Observation-Varying Equality Constraints Using Generalised Restricted Least Squares

    Get PDF
    Linear equality restrictions derived from economic theory are frequently observation-varying. Except in special cases, Restricted Least Squares (RLS) cannot be used to impose such restrictions without either underconstraining or overconstraining the parameter space. We solve the problem by developing a new estimator that collapses to RLS in cases where the restrictions are observation-invariant. We derive some theoretical properties of our so-called Generalised Restricted Least Squares (GRLS) estimator, and conduct a simulation experiment involving the estimation of a constant returns to scale production function. We find that GRLS significantly outperforms RLS in both small and large samples

    The Impact of Zero-Dispersion Wavelength Fluctuations in > 110 nm Fiber Optical Raman+Parametric Amplification

    Get PDF
    In this paper numerical results supported by experimental results, demonstrate that zero-dispersion wavelength fluctuations are found to be the main reason for the gain bandwidth limitation even in fiber optical parametric amplifiers employing ultra-short (25 m) gain fibres

    Varying Alpha Monopoles

    Full text link
    We study static magnetic monopoles in the context of varying alpha theories and show that there is a group of models for which the t'Hooft-Polyakov solution is still valid. Nevertheless, in general static magnetic monopole solutions in varying alpha theories depart from the classical t'Hooft-Polyakov solution with the electromagnetic energy concentrated inside the core seeding spatial variations of the fine structure constant. We show that Equivalence Principle constraints impose tight limits on the allowed variations of alpha induced by magnetic monopoles which confirms the difficulty to generate significant large-scale spatial variation of the fine structure constant found in previous works. This is true even in the most favorable case where magnetic monopoles are the source for these variations.Comment: 8 pages, 10 figures; Version to be published in Phys. Rev.
    • …
    corecore