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Abstract: 

Linear equality restrictions derived from economic theory are frequently observation-varying.  

Except in special cases, Restricted Least Squares (RLS) cannot be used to impose such restrictions 

without either underconstraining or overconstraining the parameter space.  We solve the problem by 

developing a new estimator that collapses to RLS in cases where the restrictions are observation-

invariant.  We derive some theoretical properties of our so-called Generalised Restricted Least 

Squares (GRLS) estimator, and conduct a simulation experiment involving the estimation of a 

constant returns to scale production function.  We find that GRLS significantly outperforms RLS in 

both small and large samples. 

 
 

 
 



 

 

1. INTRODUCTION 

Parameters in econometric models are often subject to 'extraneous information' (Goldberger 

(1964)) arising from economic theory. For example, a log-linear production function with 

constant returns to scale has the condition (or constraint) that the sum of the input coefficients 

equals one. Econometrics textbooks furnish many similar examples, which almost invariably 

involve constraints that do not vary across observations. The constraints are a necessary and 

sufficient expression of the 'extraneous information', and estimation of the parameters is 

completely standard, using for example, Restricted Least Squares (RLS). 

 

However, there are other models in which the economically implied constraints do vary 

across observations. We illustrate with two examples: 

 

First, in a study on inflation, Clements and Izan (1987), postulated a model in which the 

inflation rate for commodity i at time t could be decomposed into a time effect αt and a 

commodity effect βi. In order to identify the model, a constraint of the form Σiwitβi = 0 (where 

wit is a known number for all i and t) had to be imposed. The essential feature of this 

constraint on the βi is that it changes with t. 

 

Second, systems of demand equations should satisfy homogeneity, Engel and Slutsky 

conditions. If the system model is of the very convenient constant elasticity form, both the 

Engel and Slutsky constraints on the parameters involve the expenditure shares of the 

commodities, and these vary over time. Furthermore, the Slutsky conditions are non-linear in 

the expenditure shares. We will return to this point subsequently.  

 



 

 

2 

A fundamental property of observation-varying constraints is that it is impossible to satisfy 

them in the context of fixed-parameter models. There are always more constraints than 

parameters. This fact has given rise to three estimation approaches.  

 

First, because of the non-standard nature of the constraints, they are simply ignored (see 

Beattie and Taylor, 1985, p. 119). This is far from satisfactory as it is often the constraints 

that encapsulate economic behavioural assumptions. The unconstrained model usually does 

little more than select relevant variables and combine them in a form suitable for easy 

estimation and interpretation. The resulting estimation will be inefficient, and will not usually 

satisfy underlying economic theory. 

 

Second, the observation-varying constraints are replaced by a set of fixed constraints that are 

sufficient to satisfy the original set (but are not necessary). The estimation problem then 

becomes standard. An example of this approach is discussed in Section IV. The difficulties 

with this method are that in many cases it may not be possible to find a sufficient set of fixed-

parameter constraints, and even when such a set is available, the parameter space is over-

constrained, leading to biased estimates. 

 

Third, the number of constraints is reduced by assuming they apply only at the arithmetic or 

geometric mean of the data. Examples of this approach are Clements and Izan (1987) and 

Selvanathan (1989). Estimation becomes standard, but again, the parameter space is over-

constrained. An additional problem here is that if the constraints are non-linear in the data, 

the artificial constraints will not be consistent with the original set, leading to more bias. 

 

In this paper we propose a computationally simple, regression based method which allows the 

parameters also to vary across observations. This opens the possibility of obtaining estimates 



 

 

3 

which exactly satisfy the constraints at every data point, but which still use the data to select 

estimates that are optimal in some sense. 

 

The paper is structured as follows. In Section II we outline our general approach to estimating 

a varying-parameter model subject to observation-varying constraints. Our approach involves 

substituting the constraints into the model before making an invariance assumption that 

allows the parameters to be identified. In Section III we show how the general theory of 

linear equations can be used to implement the approach, and we motivate and derive the 

theoretical properties of a least squares estimator. Because this estimator collapses to RLS 

under certain conditions, we refer to it as Generalised Restricted Least Squares (GRLS). In 

Section IV we describe and report the results of a Monte Carlo experiment designed to 

compare the performance of GRLS and two RLS estimators of the parameters of a constant 

returns to scale production function. We find that GRLS dominates these RLS estimators in 

terms of bias and within-sample predictive performance. The paper is concluded in  

Section V. 

 

2. GENERAL METHODOLOGY FOR IMPOSING  

OBSERVATION-VARYING CONSTRAINTS 

 
Consider a set of observation-varying constraints, linear in an unknown parameter β, and 

written in the usual notation as 

 

Rtβ = rt , t = 1, 2, …T,  (1) 

 

where β is of dimension K × 1, Rt is J × K, rt is J × 1, the rank of Rt is J < K, and both Rt and 

rt are non-stochastic and known for all t. In total, there are JT constraints which we are 

seeking to impose on K parameters. Unless some constraints are redundant, this is not 
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generally possible. As discussed in the Introduction, the usual approaches to the problem 

have involved changing the constraints so that their number is reduced. Our approach is to 

increase the number of unknown parameters, by allowing the β to be observation-varying. 

 

Thus, our starting point is the linear model 

 

yt = Xtβt + et,t = 1, ..., T, (2) 

 

where yt is the t-th observation on an N × 1 vector of endogenous variables (N ≥ 1), Xt is an 

associated N × K design matrix, βt is a K × 1 vector of unknown parameters, and et is an N × 

1 disturbance vector. Without loss of generality, we assume E{et} = 0N and E{et et'} = σe
2IN 

where 0N is an N × 1 vector of zeros, σe
2 is an unknown scalar, and IN is an N × N identity 

matrix. The most distinctive feature of the model is that the parameter vector βt varies across 

observations. Moreover, the constraints now take the form 

 

Rtβt = rt.  (3) 

  

Model (2) is quite common in econometrics and a survey can be found in Judge et al (1985, 

ch 19). Noteworthy examples are systematically varying parameter models, switching 

regressions, piecewise regression models and Hildreth-Houck models. State-space models 

could also be added to this list. As it stands (2) is not identified, and in all the examples cited, 

identification is achieved by placing some additional (across-observation) structure on the βt. 

Of course, the most common example is the general linear model 

 

yt = Xtβ + et,  (4) 
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which is simply (2) with the identifying condition βt= β.  This invariance assumption is so 

widespread in econometrics that the fixed-parameter general linear model is often regarded as 

the starting point for the linear model-building process, instead of being regarded as a special 

case of (2). 

 

Our econometric problem is to estimate the KT observation-varying parameters in the model 

(2) subject to the observation-varying constraints given by (3). Our simple approach involves 

substituting the constraints (3) into the model (2) to obtain an unconstrained model of the 

form 

 

wt = Zt γt + et (5) 

 

where wt and Zt are known transformations of yt and Xt, and γt is a new K × 1 vector of 

unknown parameters which have a known relationship to βt.  

 

Model (5) is, of course, unidentified, and we overcome this problem by making the 

identifying assumption 

 

γt = γ (6) 

 

where γ is a K × 1 vector of fixed parameters. Except in special cases, the parameters of the 

resulting model can be estimated using standard econometric techniques such as Ordinary 

Least Squares (OLS). The final step in our approach is to obtain estimates of β1, …, βT using 

the known relationship between βt and γt = γ. Importantly, these estimates will exactly satisfy 

the constraints (3). 
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It is important to note that our method does not demand the invariance of γt. It is 

straightforward to estimate the observation-varying parameter model (5) using, for example, 

Flexible Least Squares (see Kalaba and Tesfatsion, 1989).  In other cases it may be more 

appropriate to use a more general identifying assumption of the form 

 

γt = δj + ργt-1 + ut, |ρ| < 1 (7) 

 

where j is a K × 1 unit vector, δ and ρ are scalars, and ut is a K × 1 random vector. In such 

cases, estimation could be effected by using the Kalman filter. However, in the remainder of 

this paper we will assume (6). 

 

A distinguishing feature of our approach is that the identifying assumption (6) is an 

observation-invariance assumption on γt, a parameter vector that is theoretically 

unconstrained (the constraints have been substituted out in the transformation from yt to wt). 

This contrasts with the usual RLS approach where the identifying assumption is an 

observation-invariance assumption on βt, a parameter vector that must satisfy the theoretical 

constraints given by (3). As already mentioned, this is problematic because there is no 

general solution to the constraints given by (1). 

 

The alternative approach we are suggesting in this paper circumvents these difficulties by 

simply delaying the usual parametric invariance assumption until after the observation-

varying constraints have been substituted into the model. This delay means that our 

invariance assumption is made on parameters that are theoretically unconstrained. It is 

possible to substitute the constraints into the model in several ways, and in the following 

section we describe a particular method that leads to an estimator with a number of desirable 

statistical properties. 
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III. Generalised Restricted Least Squares (GRLS) 

 

In this section we show how the general theory of linear equations is used to substitute the 

constraints (3) into the model (2) to obtain the observation-varying parameter model (5). 

Under the identifying assumption (6), the parameters of this model can be estimated using 

standard techniques such as OLS. In this section we discuss one such OLS-based estimator 

and derive some of its more important properties. 

 

Consider the constraints (3) where the rank of Rt is J ≤ K. The general solution to (3) is (eg. 

Graybill, 1969, p.142): 

 

βt = R+t rt + Htγt (8) 

 

where γt is an arbitrary K × 1 vector, R+t  is the (unique) Moore-Penrose generalised inverse of 

Rt, and Ht ≡ IK - R+t Rt is a symmetric idempotent K × K matrix. A vector βt will exactly 

satisfy the constraints (3) if and only if it has the form of (8). The estimation problem is to 

choose γt in some optimal way, and to this end we turn our attention to the information 

contained in the model (2). 

 

In light of the result (8), the model (2) can be written in the form of (5) where wt ≡ yt - XtR+t rt 

is N × 1 and Zt ≡ XtHt is N × K. Clearly, wt and Zt are observed for all t. As it stands, 

however, γt in the model (5) is not identified, so we make the invariance assumption (6) to 

obtain 

 

wt = Zt γ + et. (9) 
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This is a standard fixed-parameter general linear model. Thus, if the matrix Z = (Z1', ..., ZT')' 

is of full column rank1, an estimate of γ, denoted g, can be obtained using any conventional 

econometric technique. Estimates of βt can then be recovered from (8) as 

bt = R+
t rt + Htg.  (10) 

 

In the remainder of this section we consider the OLS estimator of γ in the model (9), and we 

derive some properties of the associated estimator of βt in the model (2). 

 

Under our earlier assumptions on the error vector et, the best linear unbiased estimator of γ in 

(9) is simply the OLS estimator 

 

g = (Z 'Z)-1Z 'w  (11) 

 

where w = (w1', ..., wT')'.  Note that equation (10) expresses bt as a deterministic linear 

function of g. Thus, if the parametric invariance assumption γt = γ holds, the estimator bt 

defined by (10) and (11) is the best linear unbiased estimator of βt in (2) and (3).  

 

The estimator defined by (10) and (11) has a number of other important properties. Proofs of 

the following three propositions are provided in the Appendix. 

 

P.1 Let Rt = R and rt = r for all t. Then the estimator defined by (10) and (11) is 

identical to the RLS estimator bRLS = b + (X 'X)-1R'[R(X 'X)-1R']-1(Rb - r) where 

X = (X1', ..., XT')', y = (y1', ..., yT')' and b = (X 'X)-1X 'y. 

                                                           
1  We are unaware of any result that establishes the full column rank of Z, but in every empirical example we 

have seen, this property holds.  If Z is not of full column rank, a unique estimator of γ can only be obtained 
by introducing more information into the estimation process. 
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P.2 Let Rt = [R1t, 0J,K2] where R1t is J × K1 (J < K1) of rank J and K2 ≡ K - K1. Let βt 

and bt be partitioned conformably as βt = [β1t', β2t']' and bt = [b1t', b2t']'. Then b2t 

is always observation-invariant. 

 

P.3 The estimator defined by (10) and (11) is invariant with respect to a re-ordering 

of the regressors. 

 

Proposition P.1 says that our estimator collapses to conventional RLS if the constraints are 

observation-invariant. For this reason we refer to our estimator as Generalised Restricted 

Least Squares (GRLS). It is no surprise that the (best linear unbiased) GRLS estimator and 

the conventional RLS estimator are identical when the constraints are observation-invariant – 

in this case the assumption βt = β becomes feasible and the (unique) RLS estimator is known 

to be best linear unbiased if the constraints are true. 

 

Proposition P.2 says that if any element of βt is unconstrained by (3) (ie. if the constraints 

provide no information concerning the evolution of an element of βt) then the corresponding 

element of bt defined by (10) and (11) will be observation-invariant. 

 

Proposition P.3 distinguishes the GRLS estimator from other estimators which use different 

methods to substitute the constraints (3) into the model (2). These other estimators invariably 

involve partitioning the vector βt into observation-varying and observation-invariant subsets. 

The problem with these estimators is that the partitioning is totally arbitrary, implying the 

parameter estimates are not invariant to an arbitrary re-ordering of the regressors. Such an 

estimator has been used by O'Donnell, Shumway and Ball (1999). 
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IV. Monte Carlo Experiment 

 

In this section we describe a simple experiment designed to investigate the properties of 

GRLS and RLS estimators of a constant returns to scale (CRS) production function. We have 

chosen this model for its familiarity, and because it provides an example of the 'sufficient 

conditions' mentioned in Section I. 

 

The aims of the experiment are to compare the performance of the GRLS estimator proposed 

in this paper with two commonly used fixed parameter restricted estimators, namely, an 

estimator based on sufficient conditions and one obtained by replacing the variables in the 

restrictions by their sample means. 

 

Our experiment is designed to examine relative performance in three cases, namely when 

 

(i) The identifying assumption (6) holds (ie. γt = γ) and sufficient conditions of 

the form (1) are almost satisfied at every observation (ie. when the usual 

assumption βt = β is nearly feasible). 

(ii) The identifying assumption (6) holds, but the sufficient conditions are not 

satisfied. 

(iii) Neither the identifying assumption, nor the sufficient conditions hold. 

 

We consider a translog production function defined over output yt and inputs x1t and x2t: 

 

ln(yt) = β0t + 
i=1

2
Σ βit ln(xit) + .5

i=1

2
Σ

j=1

2
Σ βijtln(xit)ln(xjt) + et, t = 1, ..., T, (12) 
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where β0t, β1t, β2t, β11t, β12t, β21t and β22t are parameters, β12t = β21t, and the et are iid 

disturbance terms with zero means and constant variance, σe
2. If the function exhibits CRS 

then, by Euler's Theorem, the parameters must satisfy 

 

i=1

2
Σ βit + 

i=1

2
Σ

j=1

2
Σ βijtln(xjt) = 1. (13) 

 

This condition is both necessary and sufficient for CRS, and implies observation-varying 

constraints on the parameters. 

 

Note that (12) can be written in the form of (2), with N = 1, K = 6, Xt = [1  ln(x1t)   ln(x2t)  

.5ln(x1t)2 ln(x1t)ln(x2t)   .5ln(x1t)2] and βt = (β0t, β1t, β2t, β11t, β12t, β22t)'.  Similarly, (13) can be 

written in the form of (3) with J = 1, Rt = [0   1   1   ln(x1t)   ln(x1tx2t)   ln(x2t)] and rt = 1.  

Finally, the result (8) means the model can also be compactly written in the form of (5). 

 

Our Monte Carlo experiment is conducted by generating data according to (12) and (13) or, 

equivalently, according to (5).  We begin by setting x1t = t and generating x2t from an  

N(µx, σx
2) distribution.  To limit the sample space of our experiment, we draw only one set of 

x2t values, using µx = 500 and σx
2 = 1000, and keep these values fixed across treatments and 

replications.  To generate data on yt we allow γt in (5) to evolve according to the general 

dynamic process (7), namely,  γt = δj + ργt-1 + ut, |ρ|<1. This process includes, as special 

cases, most of the identifying assumptions found in the econometrics literature, and is 

sufficiently flexible to allow the performance comparisons outlined above.  
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The role of ρ in (7) is two-fold: in the case where σu
2 = 0, ρ has the effect of increasing the 

mean of γt; in the case where σu
2 ≠ 0, ρ also has the effect of changing the variance of βt.  In 

order to confine ρ to this role, and to rule out disequilibrium effects, we set γ0 to its 

equilibrium value, δj/(1-ρ).   

 

The control parameters in our experiment are δ, ρ, σu, σe and T.  When σu = 0, the identifying 

assumption (6) holds exactly. Otherwise, we have chosen values of ρ, δ and σu so that the 

coefficient of variation CV = (σu 1-ρ)/(δ 1+ρ) is small, implying that (6) is at least a 

reasonable approximation to reality.    

 

For each set of control parameter values of interest, we draw ut from the N(06, σu
2I6) 

distribution, generate γt using (7), draw et from the N(0, σe
2) distribution, generate yt using (5), 

and estimate the parameter vector βt using GRLS and two RLS estimators.  For each set of 

control parameter values, these steps are replicated N = 1000 times. 

 

In each replication of the experiment we estimate the model using the GRLS estimator given 

by (10) and (11).  We also consider two RLS estimators, both of which are obtained under the 

parametric invariance assumption βt = β which, in the case of our translog production 

function, means 

 

β0t = β0, β1t =β1, β2t = β2, β11t = β11, β12t = β12 and β22t = β22.  (14) 

 

Under this invariance constraint the CRS constraint (13) becomes 

 

i=1

2
Σ βi + 

i=1

2
Σ

j=1

2
Σ βijln(xjt) = 1  (15) 
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which will be satisfied if  

 

i=1

2
Σ βi = 1 and 

i=1

2
Σ βij = 0 for j = 1, 2. (16) 

 

When econometricians set out to impose CRS on a single-output two-input translog 

production function, they typically impose the constraints (16) on the model given by (12) 

and (14).  Such constraints are completely arbitrary and have no theoretical support. The 

corresponding RLS estimator, which we call RLS1, clearly overconstrains the parameter 

space, since the constraints (14) and (16) are sufficient but not necessary for the CRS 

constraint (13) to hold.  In our Monte Carlo experiment we also consider an alternative RLS 

estimator (called RLS2) which imposes the constraint (15) at the arithmetic means of x1t and 

x2t.  This RLS estimator underconstrains the parameter space insofar as the parameters are 

only required to satisfy the constraints (15) at a single point, which is unlikely to be a sample 

point. 

 

The results of our Monte Carlo experiment are reported in Tables 1 and 2 for sample sizes T 

= 50 and T = 400.  In the top section of these tables we report our assumed values of δ, ρ, σu, 

σe, CV and associated elements of  

 

E{βt} = R+t rt + δHt j/(1-ρ)  (17) 

 

for t = 1 and t = T.  This mean vector can be used to roughly assess the validity of the 

sufficient conditions given by (16), while the difference between E{β1} and E{βT} is a crude 

measure of the degree to which the parameters are observation-invariant.  Note that (17) is 
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constant across replications, even when σu
2  ≠ 0.  The top section of Tables 1 and 2 also 

reports  

 

R-squared = (1/N) 
n=1

N
Σ Corr[ln(yt), E{ln(yt)}]2 (18) 

 

which is a measure of the average proportion of the variation in ln(yt) which is systematic.  In 

the remaining parts of Tables 1 and 2 we report three standard measures of estimator 

performance, namely bias, Root Mean Square Error (RMSE) and mean R-squared. 

 

In Tables 1 and 2 we focus on a subset of the elements of the representative vectors β1 and 

βT, partly to conserve space, and partly because our data generating process guarantees that 

E{β0t} = E{β11,1}, E{β12,1} = E{β22,1} and  E{β1t} = E{β2t} for all t, so presenting 

information on all of these parameters is unnecessarily repetitive.  We also focus on sets of 

control parameters which allow us to explore the robustness of our three estimators.  In the 

remainder of this section we present a rationale for our chosen sets of control parameters, and 

we interpret the associated simulation results. 

 

In column A of Table 1 we have set ρ = σu
2 = 0 to ensure γt is constant, σe

2 = 0.25 to ensure 

that approximately 80% of the variation in ln(yt) is systematic, and δ = 0.65 to ensure that the 

sufficient conditions given by (16) are close to being met for almost every t.  The RLS1 and 

GRLS estimators can be expected to perform reasonably well with these settings, and this is 

evidenced in the lower sections of Table 1 where we have used asterisks to identify the 

smallest bias, lowest RMSE and highest R-squared statistics.  The GRLS estimator appears to 

be least biased, while RLS1 appears to have lowest RMSE.  The GRLS estimator is able to 

explain a marginally greater proportion of the variation in ln(yt) than either of the  
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Table 1. – Monte Carlo Results for T = 50. 
 

 A B C D E F G H I 
          
True Values          
ρ 0.00 0.20 0.80 0.00 0.20 0.80 0.80 0.00 0.80 
σe 0.25 0.25 0.25 10.50 10.50 10.50 0.08 0.08 0.08 
σu 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.08 
δ 0.65 0.65 0.65 50.00 50.00 50.00 0.65 50.00 50.00 
CV 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.002 0.0005 
          
E{β0,1} = E{β11,1} = E{β0,T} 0.65 0.81 3.25 50.00 62.50 250.00 3.25 50.00 250.00 
E{β1,1} = E{β2,1}   0.48 0.59 2.25 34.21 42.75 170.90 2.25 34.21 170.90 
E{β12,1} = E{β22,1}   0.01 -0.02 -0.47 -9.02 -11.31 -45.60 -0.47 -9.02 -45.60 
E{β1,T} = E{β2,T}   0.53 0.67 2.63 40.26 50.33 201.27 2.63 40.26 201.27 
E{β11,T} 0.20 0.24 0.82 11.91 14.87 59.36 0.82 11.91 59.36 
E{β12,T} -0.22 -0.30 -1.46 -23.65 -29.58 -118.58 -1.46 -23.65 -118.58 
E{β22,T} 0.23 0.28 0.98 14.44 18.05 72.06 0.98 14.44 72.06 
          
R-squared 0.80 0.84 0.98 0.82 0.88 0.99 0.96 1.00† 1.00† 
          
Bias          
          
RLS1 β0,1 -0.10 -0.56 -7.41 -138.81 -174.03 -700.98* -7.40 -138.81 -700.98 
 β1,1 -0.09 -0.05* 0.55 12.04 14.91 60.92* 0.55 11.99 60.95 
 β12,1 0.02 -0.00* -0.43 -8.58 -10.64 -43.17* -0.43 -8.54 -43.21 
 β1,T -0.03 0.02 0.92 18.10 22.48 91.29* 0.92 18.05 91.32 
 β11,T 0.18 0.22 0.78 11.46 14.21 56.94* 0.77 11.42 56.97 
 β12,T -0.21 -0.28 -1.42 -23.20 -28.92 -116.15 -1.41 -23.16 -116.17 
 β22,T 0.21 0.26 0.94 14.00 17.38 69.63* 0.94 13.96 69.67 
           
RLS2 β0,1 4.01 6.97 58.25 1058.13 1310.40 5255.61 58.69 1042.15 5250.20 
 β1,1 -0.38 -0.61 -4.89 -84.69 -107.92 -433.61 -4.85 -86.00 -433.14 
 β12,1 0.09 0.13 0.92 15.36 19.77 79.27 0.91 15.73 79.13 
 β1,T -0.32 -0.54 -4.51 -78.63 -100.34 -403.23 -4.48 -79.94 -402.77 
 β11,T 0.20 0.24 0.99 15.29 19.03 76.35 0.98 15.27 76.36 
 β12,T -0.14 -0.14 -0.07* 0.73* 1.49 6.29* -0.08* 1.10 6.15 
 β22,T 0.71 1.15 8.47 152.38 187.62 751.97 8.55 149.27 751.38 
           
GRLS β0,1 -0.01* -0.15* 0.33* 7.37* 1.14* -1.44* 0.54* -0.07* 1.57* 
 β1,1 -0.00* 0.05* -0.12* -1.25* 0.03* -0.28* -0.13* 0.04* -0.44* 
 β12,1 0.00* -0.01 0.04* 0.03* -0.06* 0.23* 0.04* -0.02* 0.13* 
 β1,T -0.01* 0.03* -0.08* -0.09* 0.07* -0.38* -0.07* 0.03* -0.24* 
 β11,T -0.02* -0.07* 0.16* 3.27* -0.08* -0.10* 0.22* -0.06* 0.68* 
 β12,T 0.03* 0.06* -0.15 -4.14 -0.07* 0.37* -0.24 0.05* -0.73* 
 β22,T -0.04* -0.08* 0.19* 6.13* 0.43* -0.88* 0.34* -0.05* 1.01* 
           
RMSE           
           
RLS1 β0,1 0.11* 0.56* 7.41* 138.82* 174.04* 700.98* 7.40* 138.81 700.98 
 β1,1 0.13* 0.11* 0.55* 12.64* 15.41* 61.04** 0.64* 11.99 60.95 
 β12,1 0.07* 0.07* 0.43* 9.01* 10.98* 43.26* 0.47* 8.54 43.21 
 β1,T 0.10* 0.10* 0.92* 18.50* 22.82* 91.37* 0.97* 18.05 91.32 
 β11,T 0.20* 0.23* 0.78* 11.79* 14.47* 57.00** 0.80* 11.42 56.97 
 β12,T 0.22* 0.29 1.42 23.37 29.04 116.18* 1.43 23.16 116.19 
 β22,T 0.22* 0.27* 0.94* 14.27* 17.59* 69.68** 0.97* 13.96 69.67 
           
RLS2 β0,1 15.60 16.62 60.15 1239.41 1450.77 5292.23 64.15 1042.24 5250.26 
 β1,1 1.07 1.12 4.98 93.25 115.16 435.61 5.05 86.00 433.14 
 β12,1 0.28 0.28 0.95 18.40 22.35 80.01 0.98 15.72 79.13 
 β1,T 1.05 1.08 4.61 87.78 108.09 405.39 4.70 79.94 402.77 
 β11,T 0.21 0.25 0.99 15.60 19.28 76.41 1.01 15.27 76.36 
 β12,T 0.29 0.28* 0.26* 10.16* 10.54* 12.53* 0.39* 1.13 6.16* 
 β22,T 2.34 2.52 8.75 179.80 208.85 757.48 9.33 149.29 751.39 
           
GRLS β0,1 7.69 7.76 7.72 335.58 323.92 334.33* 22.99 10.07* 23.87* 
 β1,1 2.36 2.31 2.33 100.12 97.47 102.39 6.58 3.04* 6.80* 
 β12,1 0.80 0.77 0.78 33.16 32.73 34.48* 2.03 1.01* 2.08* 
 β1,T 1.51 1.44 1.47 62.00 61.27 64.60* 3.72 1.87* 3.82* 
 β11,T 3.30 3.31 3.31 143.87 138.82 144.59 9.71 4.43* 10.03* 
 β12,T 3.50 3.53 3.52 153.36 147.68 152.90 10.37 4.67 10.74 
 β22,T 4.88 4.95 4.91 214.27 206.45 212.56 14.44 6.44* 14.99* 
           
Mean R-
squared 

          

RLS1  0.80 0.84 0.88 0.68 0.72 0.81 0.87 0.82 0.82 
RLS2  0.81 0.85 0.90 0.71 0.76 0.84 0.89 0.86 0.85 
GRLS  0.82* 0.86* 0.98* 0.83* 0.89* 0.99* 0.97* 1.00*† 1.00*† 
  
†  Strictly less than 1 when rounded to 4 decimal places. 
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conventional RLS estimators, and more of the variation in ln(yt) than can be regarded as 

systematic, an interesting finite-sample property which is also shared by the OLS estimator in 

the case of the simple unrestricted linear regression model. 

 

Columns B and C in Table 1 show the effects of increasing ρ (and, consequently, the mean of 

γt) while holding all other control parameters constant.  Increasing ρ from 0.0 to 0.8 gives rise 

to slight departures from the sufficient conditions given by (16): for example, E{β1,1} = 

E{β2,1} and E{β1,T} = E{β2,T} depart noticeably from 0.5, the value at which the constraints 

given by (16) will hold exactly.  The relative performance of the three estimators appears to 

be largely unaffected by these changes in the value of ρ: GRLS still appears to be the least 

biased and to have the highest explanatory power, and RLS1 still appears to have lowest 

RMSE.  The GRLS R-squared tracks the true R-squared remarkably well, and is noticeably 

higher than the explanatory power of the conventional RLS estimators when ρ = 0.8. 

 

In Columns D to F we examine the effects of quite radical departures from the sufficient 

conditions (16), by increasing the value of δ from 0.65 to 50.   In Column D we set ρ = σu
2 = 0 

to ensure γt is observation-invariant, and we set σe
2 = 10.5 to ensure, once again, that 

approximately 80% of the variation in ln(yt) is systematic.  Columns E and F, where we set ρ 

= 0.2 and ρ = 0.8, are used to examine the effects of further increases in the mean of γt.  Not 

surprisingly, Columns D to F reveal that the conventional RLS estimators are sensitive to 

departures from the sufficient conditions (16): both conventional RLS estimators are 

noticeably biased, although the RMSE of RLS1 is still relatively small, implying RLS1 can 

be used to obtain estimates of βt which will vary little in repeated samples but will be a long 

way from the truth.  In contrast, the GRLS estimator is relatively unbiased with a relatively 

high RMSE, implying GRLS can be used to obtain estimates of βt which may vary somewhat 

from sample to sample but will, on average, be close to the truth.  Finally, the GRLS R-
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squared still tracks the true R-squared extremely well, and is much higher than the 

conventional RLS R-squared values for all values of ρ.  Thus, the GRLS estimator continues 

to dominate the conventional RLS estimators when it comes to within-sample predictive 

performance. 

 

In Columns G to I we examine the effects of non-zero σu
2 (ie. stochastic γt).  In Column G we 

set ρ = 0.8 to examine the effects of magnifying the variance of an autocorrelated γt; σu
2 = σe

2 

= 0.08 to ensure that approximately 80% of the variation in ln(yt) is systematic; and δ = 0.65 

to ensure that the sufficient conditions given by (16) are close to being met.  In Columns H 

and I we set δ = 50 to examine the effects of particularly large departures from the sufficient 

conditions (16).  Column G reveals that, when the sufficient conditions (16) are close to 

being met, the relative and absolute performance of the three estimators is not significantly 

affected by a stochastic γt.  However, columns H and I reveal that the relative performance of 

the GRLS estimator improves considerably with radical departures from the sufficient 

conditions, to the extent that the GRLS estimator dominates both conventional RLS 

estimators in terms of all three performance criteria (bias, RMSE and R-squared).  It is 

interesting that the performance of the GRLS estimator of the random coefficient vector γt 

should be so good despite the fact that γt is not estimated within a random coefficients 

framework (which could be done). 

 

Our final set of results is presented in Table 2 where we examine the effects of an increase in 

sample size from T = 50 to T = 400.  This increase in sample size appears to accentuate the 

differences in estimator performance observed in Table 1.  Specifically, the GRLS estimator 

is the least biased and, unlike the conventional RLS estimators, the degree of bias is largely 

unaffected by a stochastic γt, or by departures from the sufficient conditions given by (16).  

The RLS1 estimator tends to have lowest RMSE in cases where the conditions (16) are nearly  
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Table 2. – Monte Carlo Results for T = 400. 
 

 A B C D E F G H I 
 

True Values          
ρ 0.00 0.20 0.80 0.00 0.20 0.80 0.80 0.00 0.80 
σe 0.25 0.25 0.25 10.50 10.50 10.50 0.08 0.08 0.08 
σu 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.08 
δ 0.65 0.65 0.65 50.00 50.00 50.00 0.65 50.00 50.00 
CV 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.002 0.0005 
E{β0,1} = E{β11,1} = E{β0,T} 0.65 0.81 3.25 50.00 62.50 250.00 3.25 50.00 250.00 
E{β1,1} = E{β2,1} 0.48 0.59 2.25 34.21 42.75 170.90 2.25 34.21 170.90 
E{β12,1} = E{β22,1} 0.01 -0.02 -0.47 -9.02 -11.31 -45.60 -0.47 -9.02 -45.60 
E{β1,T} = E{β2,T} 0.56 0.70 2.78 42.70 53.38 213.50 2.78 42.70 213.50 
E{β11,T} 0.12 0.14 0.45 6.29 7.85 31.29 0.45 6.29 31.29 
E{β12,T} -0.21 -0.28 -1.32 -21.20 -26.52 -106.27 -1.32 -21.20 -106.27 
E{β22,T} 0.32 0.39 1.49 22.51 28.13 112.44 1.49 22.51 112.44 
R-squared 0.84 0.87 0.98 0.85 0.90 0.99 0.91 1.00† 1.00† 

Bias          
RLS1 β0,1 -0.12 -0.59 -7.75 -145.12 -181.79 -732.64 -7.75 -145.09 -732.64 
 β1,1 -0.09 -0.06 0.41 9.49 11.92 48.22 0.41 9.47 48.24 
 β12,1 0.01* -0.03 -0.53 -10.29 -12.86 -52.04 -0.54 -10.29 -52.01 
 β1,Τ -0.01* 0.05 0.94 17.99 22.55 90.82 0.94 17.98 90.84 
 β11,Τ 0.12 0.14 0.51 7.57 9.40 37.73 0.51 7.56 37.70 
 β12,Τ -0.21 -0.28 -1.38 -22.48 -28.07 -112.71 -1.38 -22.47 -112.68 
 β22,Τ 0.31 0.39 1.55 23.78 29.68 118.87 1.55 23.77 118.84 
RLS2 β0,1 3.99 7.50 63.41 1140.00 1428.66 5725.90 63.37 1134.52 5719.21 
 β1,1 -0.25 -0.39 -2.62 -45.96 -57.24 -229.11 -2.63 -45.52 -228.97 
 β12,1 0.05 0.06 0.27 4.34 5.41 21.19 0.27 4.24 21.18 
 β1,Τ -0.17 -0.28 -2.10 -37.46 -46.61 -186.51 -2.10 -37.02 -186.37 
 β11,Τ 0.12 0.15 0.54 8.09 10.06 40.36 0.54 8.08 40.33 
 β12,Τ -0.16 -0.19 -0.58 -7.84 -9.81 -39.48 -0.57 -7.95 -39.48 
 β22,Τ 0.81 1.37 10.00 175.90 220.55 884.39 9.90 175.40 883.43 
GRLS β0,1 0.08* 0.00* -0.02* 2.49* 0.13* -1.24* -0.19* -0.01* -0.05* 
 β1,1 -0.03* 0.00* 0.02* -0.92* 0.10* 0.43* 0.07* -0.01* 0.03* 
 β12,1 0.01* -0.00* -0.02* 0.39* 0.06* -0.15* -0.03* 0.01* -0.02* 
 β1,Τ -0.02 0.00* 0.02* -0.65* -0.04* 0.15* 0.04* -0.00* 0.03* 
 β11,Τ 0.02* 0.00* -0.00* 0.58* -0.21* -0.40* -0.06* -0.01* -0.02* 
 β12,Τ -0.03* -0.01* -0.01* -0.65* 0.38* 0.65* 0.09* 0.01* 0.02* 
 β22,Τ 0.05* 0.01* 0.01* 1.07* -0.62* -1.17* -0.15* -0.03* -0.02* 

RMSE           
RLS1 β0,1 0.12 0.59* 7.75 145.12 181.79 732.64 7.75* 145.09 732.64 
 β1,1 0.09 0.06* 0.41* 9.52* 11.94* 48.22 0.42* 9.47 48.24 
 β12,1 0.02 0.03* 0.53 10.31 12.87 52.04 0.54 10.29 52.01 
 β1,Τ 0.02 0.05* 0.94 18.00 22.56 90.82 0.96* 17.98 90.84 
 β11,Τ 0.12* 0.15* 0.51* 7.59* 9.43* 37.73 0.52* 7.56 37.70 
 β12,Τ 0.21 0.28 1.38 22.48 28.08 112.71 1.38 22.47 112.68 
 β22,Τ 0.31 0.39* 1.55 23.79* 29.69* 118.88 1.56* 23.77 118.85 

RLS2 β0,1 5.94 8.73 63.56 1155.64 1440.71 5729.13 64.71 1134.53 5719.23 
 β1,1 0.35 0.46 2.64 47.08 58.18 229.33 2.68 45.53 228.97 
 β12,1 0.08 0.09 0.27 5.12* 6.05* 21.36 0.29* 4.24 21.18 
 β1,Τ 0.30 0.37 2.11 38.83 47.77 186.78 2.16 37.02 186.37 
 β11,Τ 0.12* 0.15* 0.54 8.12 10.08 40.36 0.55 8.08 40.33 
 β12,Τ 0.18* 0.20* 0.58* 8.29* 10.18* 39.57 0.59* 7.95 39.48 
 β22,Τ 1.05 1.53 10.02 178.21 222.32 884.86 10.20 175.41 883.43 

GRLS β0,1 1.94 1.91 1.90* 79.86* 80.71* 79.35* 8.20 3.04* 8.22* 
 β1,1 0.73 0.73 0.72 29.92 30.65 29.85* 2.74 1.12* 2.76* 
 β12,1 0.26 0.26 0.26* 10.69 11.10 10.62* 0.89 0.41* 0.90* 
 β1,Τ 0.43 0.43 0.42* 17.34* 18.05* 17.22* 1.20 0.62* 1.22* 
 β11,Τ 0.59 0.59 0.58 24.45 24.58 24.37* 2.48 0.94* 2.49* 
 β12,Τ 0.88 0.88 0.87 36.86 36.62 36.65* 3.89 1.41* 3.90* 
 β22,Τ 1.56 1.55 1.54* 65.44 64.74 64.95* 7.01 2.49* 7.02* 

Mean R-squared          
RLS1 0.84* 0.87* 0.91 0.74 0.78 0.85 0.84 0.86 0.86 
RLS2 0.84* 0.87* 0.92 0.76 0.80 0.88 0.86 0.89 0.89 
GRLS 0.84* 0.87* 0.98* 0.86* 0.90* 0.99* 0.91* 1.00*† 1.00*† 

†  Strictly less than 1 when rounded to 4 decimal places. 
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satisfied, but GRLS begins to dominate in terms of RMSE when departures from these 

conditions become large, and when γt is stochastic.  Finally, the GRLS estimator clearly 

dominates the conventional RLS estimators in terms of within-sample predictive 

performance.   

 
V.  Conclusions 

 

The estimator used most frequently to impose observation-varying equality constraints on the 

parameters of linear models is unsatisfactory – because the models' parameters are typically 

assumed to be observation-invariant, Restricted Least Squares (RLS) unnecessarily 

underconstrains or overconstrains the parameter space.  We show how to overcome the 

problem by relaxing the assumption that the parameters are fixed.   

 

It is possible to impose observation-varying equality constraints on the observation-varying 

parameters of linear models in several ways.  For example, Doran and Rambaldi (1997) use 

the constraints to augment the observation equation in a state-space model, and then estimate 

the parameters using the Kalman filter.  Unfortunately, the practical usefulness of this 

approach is limited by the fact that the procedure involves the estimation of a full covariance 

matrix, and optimisation routines tend to encounter convergence problems when the number 

of parameters/elements is large.  In contrast, O'Donnell, Shumway and Ball (1999) use a 

more conventional approach involving direct substitution of the constraints into the 

econometric model.  Unfortunately, the problem with their substitution method is that the 

parameter estimates are not invariant to an arbitrary re-ordering of the regressors.  In this 

paper we overcome this problem – we show how to substitute the constraints into the model 

in such a way that the parameter estimates do not depend on the ordering of the regressors.  

The resulting estimator has several additional desirable properties, including the fact that it 

collapses to conventional RLS in the special case where the equality constraints are 
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observation-invariant.  Our so-called Generalised Restricted Least Squares (GRLS) estimator 

is a computationally simple estimator that allows us to impose observation-varying equality 

constraints in the exact form economic theory prescribes. 

 

The computational simplicity of our estimator has enabled us to conduct a reasonably 

extensive Monte Carlo investigation of its properties in small and large samples.  Overall, 

these simulation results suggest that GRLS is robust to different types of data generating 

processes, and superior to conventional RLS estimators in terms of those performance criteria 

which can be regarded as being most important for empirical work, namely bias and within-

sample predictive performance.  Although GRLS appears inferior to RLS in terms of RMSE, 

we discount the practical importance of the RMSE criterion on the grounds that it is better to 

be vaguely right (small bias with large variance) than precisely wrong (large bias with small 

variance).  We also discount the practical usefulness of one of the most commonly used RLS 

estimators (the estimator which imposes sufficient but not necessary conditions for the 

restrictions implied by theory to hold) on the grounds that sufficient conditions do not always 

exist.  Even when they do exist, there is no theoretical reason for believing that they 

appropriately restrict the parameters. Our experiments show that when such restrictions are 

inappropriate, large biases occur. Of course, the other RLS estimator (the estimator which 

imposes restrictions at mean values of the data) is of little practical value because the 

constraints are only imposed at one point, and the experiments conducted in this paper 

indicate that its performance is uniformly poor. 
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APPENDIX 

Proofs 

 

P.1:  Let Rt = R and rt = r for all t.  Then the estimator defined by (10) and (11) is 

identical to the RLS estimator bRLS = b + (X 'X)-1R'[R(X 'X)-1R']-1(Rb - r) 

where X = (X '1, ..., X 'T)', y = (y '1, ..., y 'T)' and b = (X 'X)-1X 'y. 

 

Proof:  Define y = (y1', ..., yT')' and X = (X1', ..., XT')'.  If Rt = R and  rt = r for 

all t then  

 

(A.1)  H = IK - R+R. 

(A.2)  Z = X(IK - R+R) = XH,  

(A.3)  w = y - XR+r,  

 

and g solves the normal equations (Z 'Z)g = Z 'w.  The RLS estimate bRLS is 

unique and satisfies the equations RbRLS = r and (X 'X)bRLS = X 'y + R'λ where 

λ is an undetermined vector.  By construction, the GRLS estimate b = R+r + 

Hg satisfies Rb = r.  It follows that b = bRLS if we can find a vector λ such that 

(X 'X)b = X 'y + R'λ.  Consider  

 
(A.4)  Z 'Xb = Z 'XR+r + Z 'XHg      

  

           = Z 'XR+r + (Z 'Z)g  

            = Z 'XR+r + Z 'w  

            = Z '[XR+r + (y - XR+r)]  

            = Z 'y.   
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Therefore Z '(Xb - y) = (IK - R+R)[(X 'X)b - X 'y] = 0.  Thus, (X 'X)b - X 'y lies 

in the orthogonal complement of (IK - R+R).  That is, it lies in the space 

spanned by the columns of R' (see Graybill, Theorem 6.4.11, p.107).  

Therefore, for some λ, (X 'X)b - X 'y = R'λ and the result b = bRLS is proved. 

 

P.2:   Let Rt = [R1t, 0J,K2] where R1t is J × K1 (J < K1) of rank J and K2 ≡ K - 

K1.  Let βt and bt be partitioned conformably as βt = [β1t', β2t']' and bt = [b1t', 

b2t']'.  Then b2t is always observation-invariant. 

 

Proof:    If Rt = [R1t, 0J,K2] then it is easily verified that 

 

(A.5)  R+
t  = 







R+
1t

 0K2,J
 

 

and 

 

(A.6)  bt = 






R+
1t

 0K2,J
rt + (IK - 







R+
1t

 0K2,J
[R+

1t, 0J,K2])g 

 

      = 






R+
1trt

 0K2,1
 +  







IK1 - R+
1tR1t 0K1,K2

 0K2,K1 IK2
 






g1

g2
 

 

where g has been partitioned conformably as g = [g1', g2']'.  It follows that b2t = 

g2 and is observation-invariant. 
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P.3:  The estimator defined by (10) and (11) is invariant with respect to a re-

ordering of the regressors. 

 

Proof:  A re-ordering of the regressors in (1) yields  

 

(A.7)  yt = X*
t β*

t  + et  

 

where X*
t  = XtW, β*

t  = W 'βt and W is a permutation (orthogonal) matrix.  A 

necessary and sufficient condition for the elements of bt to be invariant under a 

re-ordering of the regressors is that the GRLS estimate of β*
t  is b*

t  = W 'bt.  To 

see this holds, note that the constraint equation corresponding to the re-ordered 

model (A.7) is  

 

(A.8)  R*
t β*

t  = rt 

 

where R*
t  = RtW and R*

t
+ = (RtW)+ = W 'R+

t  (Graybill, Theorem 6.2.10, p.100).  

The general solution to (A.8) is 

 

(A.9)  β*
t  = R*

t
+rt + (IK - R*

t
+R*

t )γ*
t  

 

where γ*
t  is an arbitrary K × 1 vector.  Substituting (A.9) into (A.7) yields 

 

(A.10)  w*
t  = Z*

t γ*
t  + et  

 

where  

(A.11)  w*
t  = yt - X*

t R*
t

+rt  
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       = yt - XtWW 'R+
t rt  

          = wt 

and 

 (A.12)  Z*
t  = X*

t (IK - R*
t

+R*
t )  

       = XtW(IK - W 'R+
t RtW)  

       = XtWW '(IK - R+
t Rt)W  

       = Xt(IK - R+
t Rt)W  

       = ZtW. 

 

Under the invariance assumption γ*
t  = γ* we obtain the analogue of (11) as  

 

 (A.13)  g* = (Z*'Z*)-1Z*'w*  

       = (W 'Z 'ZW)-1W 'Z 'w  

       = W 'g  

 

where w* = (w*
1', ... , w*

T')' and Z* = (Z*
1', ... , Z*

T')'.  Finally, the analogue of (10) 

is 

 

(A.9)  b*
t  = R*

t
+rt + (IK - R*

t
+R*

t )g* 

       = W 'R+
t rt + (IK - W 'R+

t RtW)W 'g 

       = W '[R+
t rt + (IK - R+

t Rt)WW 'g] 

       = W '[R+
t rt + (IK - R+

t Rt)g] 

       = W 'bt 

 
as required. 


