83 research outputs found
Agrammatic but numerate
A central question in cognitive neuroscience concerns the extent to
which language enables other higher cognitive functions. In the
case of mathematics, the resources of the language faculty, both
lexical and syntactic, have been claimed to be important for exact
calculation, and some functional brain imaging studies have shown
that calculation is associated with activation of a network of
left-hemisphere language regions, such as the angular gyrus and
the banks of the intraparietal sulcus. We investigate the integrity
of mathematical calculations in three men with large left-hemisphere
perisylvian lesions. Despite severe grammatical impairment
and some difficulty in processing phonological and orthographic
number words, all basic computational procedures were intact
across patients. All three patients solved mathematical problems
involving recursiveness and structure-dependent operations (for
example, in generating solutions to bracket equations). To our
knowledge, these results demonstrate for the first time the remarkable
independence of mathematical calculations from language
grammar in the mature cognitive system
Correlations around an interface
We compute one-loop correlation functions for the fluctuations of an
interface using a field theory model. We obtain them from Feynman diagrams
drawn with a propagator which is the inverse of the Hamiltonian of a
Poschl-Teller problem. We derive an expression for the propagator in terms of
elementary functions, show that it corresponds to the usual spectral sum, and
use it to calculate quantities such as the surface tension and interface
profile in two and three spatial dimensions. The three-dimensional quantities
are rederived in a simple, unified manner, whereas those in two dimensions
extend the existing literature, and are applicable to thin films. In addition,
we compute the one-loop self-energy, which may be extracted from experiment, or
from Monte Carlo simulations. Our results may be applied in various scenarios,
which include fluctuations around topological defects in cosmology,
supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic
systems, interfaces separating Bose-Einstein condensates, and interfaces in
binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure
Aniline incorporated silica nanobubbles
We report the synthesis of stearate functionalized nanobubbles of SiO2 with a few aniline
molecules inside, represented as C6H5NH2@SiO2@stearate, exhibiting fluorescence with red-shifted
emission. Stearic acid functionalization allows the materials to be handled just as free molecules, for dissolution,
precipitation, storage etc. The methodology adopted involves adsorption of aniline on the surface of
gold nanoparticles with subsequent growth of a silica shell through monolayers, followed by the selective
removal of the metal core either using sodium cyanide or by a new reaction involving halocarbons. The
material is stable and can be stored for extended periods without loss of fluorescence. Spectroscopic and
voltammetric properties of the system were studied in order to understand the interaction of aniline with
the shell as well as the monolayer, whilst transmission electron microscopy has been used to study the
silica shell
Exploring the Photophysical Properties of Molecular Systems Using Excited State Accelerated ab Initio
In the present work, we employ excited state accelerated ab initio molecular dynamics (A-AIMD) to efficiently study the excited state energy landscape and photophysical topology of a variety of molecular systems. In particular, we focus on two important challenges for the modeling of excited electronic states: (i) the identification and characterization of conical intersections and crossing seams, in order to predict different and often competing radiationless decay mechanisms, and (ii) the description of the solvent effect on the absorption and emission spectra of chemical species in solution. In particular, using as examples the Schiff bases formaldimine and salicylidenaniline, we show that A-AIMD can be readily employed to explore the conformational space around crossing seams in molecular systems with very different photochemistry. Using acetone in water as an example, we demonstrate that the enhanced configurational space sampling may be used to accurately and efficiently describe both the prominent features and line-shapes of absorption and emission spectra
- …