1,927 research outputs found

    The End of Time?

    Get PDF
    I discuss J. Barbour's Machian theories of dynamics, and his proposal that a Machian perspective enables one to solve the problem of time in quantum geometrodynamics (by saying that there is no time). I concentrate on his recent book 'The End of Time' (1999).Comment: 48 pages Latex. A shortened version will appear in 'The British Journal for Philosophy of Science

    Experience applicable to the Viking lander from a study of related space flight projects

    Get PDF
    Related space mission data for baseline evaluation of Viking Lander design and operatio

    Macroevolution and macroecology through deep time

    Get PDF
    The fossil record documents two mutually exclusive macroevolutionary modes separated by the transitional Ediacaran Period. Despite the early appearance of crown eukaryotes and an at least partially oxygenated atmosphere, the pre-Ediacaran biosphere was populated almost exclusively by microscopic organisms exhibiting low diversity, no biogeographical partitioning and profound morphological/evolutionary stasis. By contrast, the post-Ediacaran biosphere is characterized by large diverse organisms, bioprovinciality and conspicuously dynamic macroevolution. The difference can be understood in terms of the unique escalatory coevolution accompanying the early Ediacaran introduction of eumetazoans, followed by their early Cambrian (Tommotian) expansion into the pelagic realm. Eumetazoans reinvented the rules of macroecology through their invention of multitrophic food webs, large body size, life-history trade-offs, ecological succession, biogeography, major increases in standing biomass, eukaryote-dominated phytoplankton and the potential for mass extinction. Both the pre-Ediacaran and the post-Ediacaran biospheres were inherently stable, but the former derived from the simplicity of superabundant microbes exposed to essentially static, physical environments, whereas the latter is based on eumetazoan-induced diversity and dynamic, biological environments. The c. 100-myr Ediacaran transition (extending to the base of the Tommotian) can be defined on evolutionary criteria, and might usefully be incorporated into the Phanerozoic

    Causation, Measurement Relevance and No-conspiracy in EPR

    Get PDF
    In this paper I assess the adequacy of no-conspiracy conditions employed in the usual derivations of the Bell inequality in the context of EPR correlations. First, I look at the EPR correlations from a purely phenomenological point of view and claim that common cause explanations of these cannot be ruled out. I argue that an appropriate common cause explanation requires that no-conspiracy conditions are re-interpreted as mere common cause-measurement independence conditions. In the right circumstances then, violations of measurement independence need not entail any kind of conspiracy (nor backwards in time causation). To the contrary, if measurement operations in the EPR context are taken to be causally relevant in a specific way to the experiment outcomes, their explicit causal role provides the grounds for a common cause explanation of the corresponding correlations.Comment: 20 pages, 1 figur

    The Oxford Questions on the foundations of quantum physics

    Get PDF
    The twentieth century saw two fundamental revolutions in physics -- relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality, or merely change belief? Must relativity and quantum theory just co-exist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.Comment: 8 page

    Constructional and functional morphology of Ediacaran rangeomorphs

    Get PDF
    Ediacaran rangeomorphs were the first substantially macroscopic organisms to appear in the fossil record, but their underlying biology remains problematic. Although demonstrably heterotrophic, their current interpretation as osmotrophic consumers of dissolved organic carbon (DOC) is incompatible with the inertial (> Re) and advective (> Pe) fluid-dynamics accompanying macroscopic length-scales. The key to resolving rangeomorph feeding and physiology lies in their underlying construction. Taphonomic analysis of three-dimensionally preserved Charnia from the White Sea identifies the presence of large, originally water-filled compartments that served both as a hydrostatic exoskeleton and semi-isolated digestion chambers capable of processing recalcitrant substrates – likely in conjunction with a resident microbiome. At the same time, the hydrodynamically exposed outer surface of macroscopic rangeomorphs would have dramatically enhanced both gas exchange and food delivery. A bag-like epithelium filled with transiently circulated seawater offers an exceptionally efficient means of constructing a simple, DOC-consuming, multicellular heterotroph. Such a bodyplan is broadly comparable to that of anthozoan cnidarians – minus such derived features as muscle, tentacles and a centralized mouth. Along with other early bag-like fossils, rangeomorphs can be reliably identified as total-group eumetazoans, potentially colonial stem-group cnidarians

    Interacting classical and quantum ensembles

    Full text link
    A consistent description of interactions between classical and quantum systems is relevant to quantum measurement theory, and to calculations in quantum chemistry and quantum gravity. A solution is offered here to this longstanding problem, based on a universally-applicable formalism for ensembles on configuration space. This approach overcomes difficulties arising in previous attempts, and in particular allows for backreaction on the classical ensemble, conservation of probability and energy, and the correct classical equations of motion in the limit of no interaction. Applications include automatic decoherence for quantum ensembles interacting with classical measurement apparatuses; a generalisation of coherent states to hybrid harmonic oscillators; and an equation for describing the interaction of quantum matter fields with classical gravity, that implies the radius of a Robertson-Walker universe with a quantum massive scalar field can be sharply defined only for particular `quantized' values.Comment: 31 pages, minor clarifications and one Ref. added, to appear in PR
    corecore